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Talk Outline

• Motivating example: (Gaussian) mean estimation
• Trimmed mean
• Smooth Sensitivity & Differential Privacy
• New Smooth Sensitivity-based algorithms
• Applying Smooth Sensitivity to Gaussian mean estimation
• Conclusion & further work

• Theme of this work: Connecting robustness and privacy.



(Gaussian) Mean Estimation

• Data: 𝑋", 𝑋$,⋯ , 𝑋& i.i.d. samples from 𝑁(𝜇, 𝜎$).
• Goal: Learn 𝜇.
• Know: 𝜇 ∈ [𝑎, 𝑏] and 𝜎 (for simplicity).
• Constraint: Must satisfy 𝜀-differential privacy or similar.

• Extremely fundamental task. Embarrassingly under-studied.
• Note: Distributional assumption on data for utility, but privacy must 

hold for any input.



Preview: Our Algorithm for Gaussian Mean
Theorem. Let 𝑛 ≥ 𝑂 log( 𝑏 − 𝑎 /𝜎) /𝜀 . Then there exists a 𝜀-DP (or 
"
$
𝜀$-CDP) algorithm 𝑀 ∶ ℝ& → ℝ such that, for all 𝜇 ∈ [𝑎, 𝑏], we have

𝐄 𝑀 𝑋 − 𝜇 $ ≤
𝜎$

𝑛
+
𝜎$

𝑛$
⋅ 𝑂

log 𝑏 − 𝑎
𝜎

𝜀
+
log 𝑛
𝜀$

when 𝑋 ← 𝑁 𝜇, 𝜎$ &.

• Matches previous work [Karwa-Vadhan18].
• Extends to unknown 𝜎.
• Extends to non-Gaussian data.



Non-Privately: Empirical Mean

• Data: 𝑋", 𝑋$,⋯ , 𝑋& i.i.d. samples from 𝑁(𝜇, 𝜎$)
• Non-private estimator: G𝑋 = "

&
∑J& 𝑋J

• Unbiased 𝐄 G𝑋 = 𝜇 and minimal variance 𝐕𝐚𝐫 G𝑋 = NO

&

• Problem: Global sensitivity = ∞ so cannot just add noise to achieve 
DP.
• In contrast, for distribution with bounded support [𝑎, 𝑏] simple 𝜀-DP 

algorithm: 𝑀 𝑥 = 𝑥̅ + Lap UVW
X&

.



Truncation [Karwa-Vadhan18]

• Step 1: Obtain crude estimate Y𝜇 ∈ [𝜇 ± 𝑂 𝜎 ].

• Step 2: Truncate data 𝑋", 𝑋$,⋯ , 𝑋& to [ Y𝜇 ± 𝑂(𝜎 log 𝑛 )].

• Step 3: Add noise to empirical mean with scale 𝑂 N [\] &
X&

.

• Note log 𝑛 factor comes from Gaussian tail bound. 
• This approach doesn’t extend well to heavy-tailed distributions.



Our Approach: Trimmed Mean
• Intuition: Outlier removal. Remove top m and bottom m.

Define trima:ℝ& → ℝ by 

trima 𝑥 =
𝑥(ac") + 𝑥(ac$) + ⋯+ 𝑥(&Va)

𝑛 − 2𝑚
where 𝑥(") ≤ 𝑥 $ ≤ ⋯ ≤ 𝑥(&) is the order statistics of 𝑥.

• Interpolates between mean (𝑚 = 0) and median (𝑚 = &V"
$

).
• Unbiased: 𝐄 trima 𝑋 = 𝜇 for 𝑋 ← 𝑁 𝜇, 𝜎$ &.

• Variance: 𝐕𝐚𝐫 trima 𝑋 = NO

&
⋅ 1 + 𝑂 a

&
.

• (This holds for any symmetric distribution.)



𝐕𝐚𝐫 median ≈
𝜋
2𝑛

𝐕𝐚𝐫 mean =
1
𝑛



Trimmed Mean for Non-Gaussians

Trimming can actually reduce variance if data is heavy-tailed!
E.g., Laplace instead of Gaussian



𝐕𝐚𝐫 mean =
2
𝑛

𝐕𝐚𝐫 median ≈
1
𝑛



1
2
𝒩 0,1 +

1
2
𝒩(0,2.5$)



Sensitivity of Trimmed Mean?

• Consider large but bounded domain: trima: [𝑎, 𝑏]&→ 𝑎, 𝑏

trima 𝑥 =
𝑥(ac") + 𝑥(ac$) + ⋯+ 𝑥(&Va)

𝑛 − 2𝑚
• Global sensitivity: Large, but finite.

𝐺𝑆 = max
q,qr

trima 𝑥 − trima 𝑥′ =
𝑏 − 𝑎
𝑛 − 2𝑚

• Local sensitivity: Often much smaller.
𝐿𝑆 𝑥 = max

qu
trima 𝑥 − trima 𝑥′

=
max 𝑥(&Va) − 𝑥 a , 𝑥 &Vac" − 𝑥(ac")

𝑛 − 2𝑚



Smooth Sensitivity



• Can add noise proportional to global sensitivity to attain DP [DMNS06].
• We would like to be able to add noise proportional to local sensitivity.
• Problem: The local sensitivity may itself be high sensitivity. I.e., noise 

magnitude may compromise privacy.

• Solution: Smooth Sensitivity [Nissim-Raskhodnikova-Smith07]
• Powerful and elegant idea. 
• This work: Getting more mileage out of Smooth Sensitivity.

Idea: Smooth Sensitivity [NRS07]



Smooth Sensitivity [Nissim-Raskhodnikova-Smith07]
Let 𝑓, 𝑔: 𝑋& → ℝ satisfy, for all neighbouring 𝑥, 𝑥u ∈ 𝑋&,

𝑓 𝑥 − 𝑓 𝑥u ≤ 𝑔 𝑥 and      𝑒Vy𝑔 𝑥 ≤ 𝑔 𝑥u ≤ 𝑒y𝑔(𝑥).
Then we say 𝑔 is a 𝑡-smooth upper bound on the local sensitivity of 𝑓.

Smooth sensitivity algorithm:
𝑀 𝑥 = 𝑓 𝑥 + 𝑍 ⋅ 𝑔(𝑥)

• But what noise distribution 𝑍 can we use?
• To satisfy 𝜀-DP, we need 𝑍 ≈X 𝑍 + 𝑠 (as usual) and also 𝑍 ≈X 𝑒y𝑍.



Additive and multiplicative distortions



Smooth Sensitivity Distributions [NRS07]

• Cauchy: density ∝ "
"cqO

, sample Z = �
�

for i.i.d. 𝑋, 𝑌 ← 𝑁(0,1).
• Provides pure 𝜀-DP.
• Infinite variance, even mean not well defined!

• More generally: density ∝ "
"c|q|�

• Provides pure 𝜀-DP.
• 𝐄 |𝑍|� < ∞ for all 𝑝 < 𝛾 − 1.
• Not all moments exist (inherent for pure 𝜀-DP).

• Laplace, Gaussian
• Provide approximate (𝜀, 𝛿)-DP. (Need to pick & pay for 𝛿.)



New Smooth Sensitivity Distributions
• Student’s T: density ∝ "

�cqO

���
O , Z = �

��Oc�OOc⋯c��
O

for 𝑋, 𝑌",⋯ , 𝑌� ← 𝑁(0,1).

• Provides pure 𝜀-DP.
• 𝐄 |𝑍|� < ∞ for all 𝑝 < 𝑑.

• Laplace-logNormal: 𝑍 = 𝑋 ⋅ 𝑒N� for 𝑋 = Laplace, 𝑌 = Gaussian
• Provides concentrated DP.
• 𝐄 |𝑍|� < ∞ for all 𝑝.

• Uniform-logNormal: 𝑍 = 𝑋 ⋅ 𝑒N� for 𝑋 = Uniform([−1,1]), 𝑌 = Gaussian
• Provides concentrated DP.  (Analysis not quite as good as Laplace-logNormal.)
• 𝐄 |𝑍|� < ∞ for all 𝑝.

• arsinhNormal: 𝑍 = sinh 𝑋 for 𝑋 = Gaussian
• Provides concentrated DP. (Analysis messier than Laplace-logNormal.)
• 𝐄 |𝑍|� < ∞ for all 𝑝.



Aside: Concentrated Differential Privacy

• Concentrated DP is a “best of both worlds” between pure 𝜀-DP and 
approximate (𝜀, 𝛿)-DP.
• Advanced composition, no “death and destruction” 𝛿, no superfluous log("

�
) factors.

• Several variants [Dwork-Rothblum16,Bun-S.16,Mironov17,Bun-Dwork-
Rothblum-S.18], same underlying ideas.
• Use Rényi divergences from information theory.

𝑀 is "
$
𝜀$-CDP if, for all neighbouring 𝑥, 𝑥′,

∀𝛼 > 1 D� 𝑀 𝑥 |𝑀 𝑥u ≤
1
2 𝜀

$𝛼



Laplace-logNormal Privacy Analysis
Laplace-logNormal: 𝑍 = 𝑋 ⋅ 𝑒N� for 𝑋 = Laplace, 𝑌 = Gaussian

• Show that 𝑍 provides "
$
𝜀$-CDP with Smooth Sensitivity:

Theorem. D�(𝑍| 𝑒y𝑍 + 𝑠 ≤ "
$
𝜀$𝛼 for all 𝛼 > 1, where

𝜀 =
|𝑡|
𝜎
+ 𝑒

�
$N

O
⋅ |𝑠|

• logNormal deals with multiplicative distortion:
D�(𝑍| 𝑒y𝑍 = D�(𝑋 ⋅ 𝑒N� | 𝑋 ⋅ 𝑒N�cy

≤ max
q
D�(𝑥 ⋅ 𝑒N� | 𝑥 ⋅ 𝑒N�cy = D�(𝜎𝑌| 𝜎𝑌 + 𝑡 =

𝛼𝑡$

2𝜎$

• Get pure DP for additive distortion:  D�(𝑍| 𝑍 + 𝑠 ≤ 𝑒
�
ON

O
|𝑠|

• Apply triangle inequality (a.k.a. group privacy) to combine.



Tails of Smooth Sensitivity + CDP Distributions
All these distributions satisfying concentrated DP – Laplace-logNormal, Uniform-
logNormal, & arsinhNormal – have quasi-polynomial tails:

𝐏 |𝑍| > 𝑧 = 𝑒V� [\] � O

Moments: 𝐄 𝑍 � = 𝑒�(�O).  (For pure DP, polynomial tails & infinite moments.)
This is necessary. Lower bound:
• Group privacy: 𝑍 ≈X 𝑍 + 𝑠 ≈X 𝑒y 𝑍 + 𝑠 ≈X 𝑒$y 𝑍 + 𝑠 ≈X ⋯ ≈X 𝑒�y(𝑍 + 𝑠)

• p = 𝐏 𝑍 ≥ 𝑧 ≈�X 𝐏 𝑒�y 𝑍 + 𝑠 ≥ 𝑧 = 𝐏 𝑍 ≥ 𝑒V�y𝑧 − 𝑠 ≥ 𝐏 𝑍 ≥ 0 ≥ "
$

• Can set 𝑘 = [\] � V[\] �
y

and use group privacy bound: 

D"  
1
2 𝑝 =

1
2 log

1
2𝑝 +

1
2 log

1
2(1 − 𝑝) ≤

1
2𝑘

$𝜀$

• Rearrange: 𝑝 ≥ 𝑝 1 − 𝑝 ≥ "
¡
𝑒V�OXO = 𝑒V¢ [\] � O



Smooth Sensitivity
+ Trimmed Mean



Smooth Algorithm for Gaussian Mean
Theorem. Let 𝑛 ≥ 𝑂 log( 𝑏 − 𝑎 /𝜎) /𝜀 . Then there exists a 𝜀-DP (or "

$
𝜀$-

CDP) algorithm 𝑀 ∶ ℝ& → ℝ such that, for all 𝜇 ∈ [𝑎, 𝑏], we have

𝐄 𝑀 𝑋 − 𝜇 $ ≤
𝜎$

𝑛 +
𝜎$

𝑛$ ⋅ 𝑂
log 𝑏 − 𝑎

𝜎
𝜀 +

log 𝑛
𝜀$

when 𝑋 ← 𝑁 𝜇, 𝜎$ &.

• Matches previous work [Karwa-Vadhan18].

• Unknown 𝜎 ∈ [𝜎aJ&, 𝜎aWq]: log
UVW
N

becomes log UVW
N£¤¥

+ log N£¦§
N£¤¥

• Not specific to Gaussian data. Only use symmetry and tail bound.



Smooth Algorithm for General Means
Theorem. Let 𝑛 ≥ 𝑂 log(𝑛 𝑏 − 𝑎 /𝜎) /𝜀 . Then there exists a 𝜀-DP (or 
"
$
𝜀$-CDP) algorithm 𝑀 ∶ ℝ& → ℝ such that, for all 𝜇 ∈ [𝑎, 𝑏], we have

𝐄 𝑀 𝑋 − 𝜇 $ ≤
𝜎$

𝑛
⋅ 𝑂

log 𝑛 𝑏 − 𝑎𝜎
𝜀

+
1
𝜀$

when 𝑋 ← 𝐷& and 𝐷 is any distribution with mean 𝜇 and variance 𝜎$.

• Matches previous work [Feldman-Steinke18].
• This result uses the same algorithm as for Gaussians!
• Algorithm matches distribution and can interpolate between results.



Smooth Sensitivity Algorithm
Let 𝑓, 𝑔: 𝑋& → ℝ satisfy, for all neighbouring 𝑥, 𝑥u ∈ 𝑋&,

𝑓 𝑥 − 𝑓 𝑥u ≤ 𝑔 𝑥 and      𝑒Vy𝑔 𝑥 ≤ 𝑔 𝑥u ≤ 𝑒y𝑔(𝑥).
Then we say 𝑔 is a 𝑡-smooth upper bound on the local sensitivity of 𝑓.

Smooth sensitivity algorithm:
𝑀 𝑥 = 𝑓 𝑥 + 𝑍 ⋅ 𝑔(𝑥)

For 𝑋 ← 𝑁(𝜇, 𝜎$) and 𝐄 𝑍 = 0,

𝐄 𝑀 𝑋 − 𝜇 $ = 𝐄 𝑓 𝑋 − 𝜇 $ + 𝐄 𝑔 𝑋 $ ⋅ 𝐕𝐚𝐫[𝑍]

Non-private error
of trimmed mean

𝑂
1
𝜀$

𝜎$

𝑛
⋅ 1 + 𝑂

𝑚
𝑛

???



Smooth Sensitivity of Trimmed Mean
• Consider large but bounded domain: trima: [𝑎, 𝑏]&→ 𝑎, 𝑏

trima 𝑥 =
𝑥(ac") + 𝑥(ac$) + ⋯+ 𝑥(&Va)

𝑛 − 2𝑚
• Local sensitivity:

𝐿𝑆 𝑥 =
max 𝑥(&Va) − 𝑥 a , 𝑥 &Vac" − 𝑥(ac")

𝑛 − 2𝑚
• Smooth sensitivity:

𝑔 𝑥 = 𝑆𝑆 𝑥, 𝑡 = max
qu

𝑒Vy qrVq 𝐿𝑆(𝑥′)

= max
©ª�ª&

𝑒V�y max
©ªℓª¬c"

𝑥(&Vac�c"Vℓ) − 𝑥(ac"Vℓ)
𝑛 − 2𝑚

where 𝑥("VJ) = 𝑎 and 𝑥(&cJ) = 𝑏 for 𝑖 ≥ 1.



Smooth Sensitivity of Trimmed Mean
Smooth sensitivity:

𝑔 𝑥 = 𝑆𝑆 𝑥, 𝑡 = max
qu

𝑒Vy qrVq 𝐿𝑆(𝑥′)

= max
©ª�ª&

𝑒V�y max
©ªℓª¬c"

𝑥(&Vac�c"Vℓ) − 𝑥(ac"Vℓ)
𝑛 − 2𝑚

where 𝑥("VJ) = 𝑎 and 𝑥(&cJ) = 𝑏 for 𝑖 ≥ 1.

Loose (but sufficient) bound:

𝑔 𝑥 $ ≤
𝑥 & − 𝑥 "

$ + 𝑒Vay 𝑏 − 𝑎 $

𝑛 − 2𝑚 $

For 𝑋 ← 𝑁(𝜇, 𝜎$),

𝐄 𝑔 𝑋 $ ≤
𝜎$ ⋅ O(log 𝑛) + 𝑒Vay 𝑏 − 𝑎 $

𝑛 − 2𝑚 $

Set 𝑚 = 𝑂 "
y
log UVW

N
and 𝑡 = X

$



Smooth Algorithm for Gaussian Mean
Theorem. Let 𝑛 ≥ 𝑂 log( 𝑏 − 𝑎 /𝜎) /𝜀 . Then there exists a 𝜀-DP (or "

$
𝜀$-

CDP) algorithm 𝑀 ∶ ℝ& → ℝ such that, for all 𝜇 ∈ [𝑎, 𝑏], we have

𝐄 𝑀 𝑋 − 𝜇 $ ≤
𝜎$

𝑛 +
𝜎$

𝑛$ ⋅ 𝑂
log 𝑏 − 𝑎

𝜎
𝜀 +

log 𝑛
𝜀$

when 𝑋 ← 𝑁 𝜇, 𝜎$ &.

• Matches previous work [Karwa-Vadhan18].

• Unknown 𝜎 ∈ [𝜎aJ&, 𝜎aWq]: log
UVW
N

becomes log UVW
N£¤¥

+ log N£¦§
N£¤¥

• Not specific to Gaussian data. Only use symmetry and tail bound.



Some Experimental Plots!













Conclusion
• Smooth Sensitivity is great!
• New distributions for use with smooth sensitivity.
• Application to mean estimation.
Further work:
• Sharper upper/lower bounds for Gaussian mean estimation?
• Other applications of smooth sensitivity?
• E.g., scale estimation, confidence intervals [Karwa-Vadhan18], model 

fitting/regression, multivariate distributions
• Other noise distributions (or better analyses of these ones).

Thanks!


