Average-Case Averages: Private Algorithms for Smooth Sensitivity and Mean Estimation

Thomas Steinke

IBM Research – Almaden

http://stein.ke/

Based on joint work with Mark Bun https://arxiv.org/abs/1906.02830

Talk Outline

- Motivating example: (Gaussian) mean estimation
- Trimmed mean
- Smooth Sensitivity & Differential Privacy
- New Smooth Sensitivity-based algorithms
- Applying Smooth Sensitivity to Gaussian mean estimation
- Conclusion & further work
- Theme of this work: Connecting robustness and privacy.

(Gaussian) Mean Estimation

- Data: X_1, X_2, \dots, X_n i.i.d. samples from $N(\mu, \sigma^2)$.
- Goal: Learn μ .
- Know: $\mu \in [a, b]$ and σ (for simplicity).
- Constraint: Must satisfy ε -differential privacy or similar.
- Extremely fundamental task. Embarrassingly under-studied.
- Note: Distributional assumption on data for utility, but privacy must hold for any input.

Preview: Our Algorithm for Gaussian Mean

Theorem. Let $n \ge O(\log((b-a)/\sigma)/\varepsilon)$. Then there exists a ε -DP (or $\frac{1}{2}\varepsilon^2$ -CDP) algorithm $M : \mathbb{R}^n \to \mathbb{R}$ such that, for all $\mu \in [a, b]$, we have $\mathbf{E}[(M(X) - \mu)^2] \le \frac{\sigma^2}{n} + \frac{\sigma^2}{n^2} \cdot O\left(\frac{\log\left(\frac{b-a}{\sigma}\right)}{\varepsilon} + \frac{\log n}{\varepsilon^2}\right)$ when $X \leftarrow N(\mu, \sigma^2)^n$.

- Matches previous work [Karwa-Vadhan18].
- Extends to unknown σ .
- Extends to non-Gaussian data.

Non-Privately: Empirical Mean

- Data: X_1, X_2, \dots, X_n i.i.d. samples from $N(\mu, \sigma^2)$
- Non-private estimator: $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$
- Unbiased $\mathbf{E}[\overline{X}] = \mu$ and minimal variance $\mathbf{Var}[\overline{X}] = \frac{\sigma^2}{n}$
- Problem: Global sensitivity = ∞ so cannot just add noise to achieve DP.
- In contrast, for distribution with bounded support [a, b] simple ε -DP algorithm: $M(x) = \overline{x} + \text{Lap}\left(\frac{b-a}{\varepsilon n}\right)$.

Truncation [Karwa-Vadhan18]

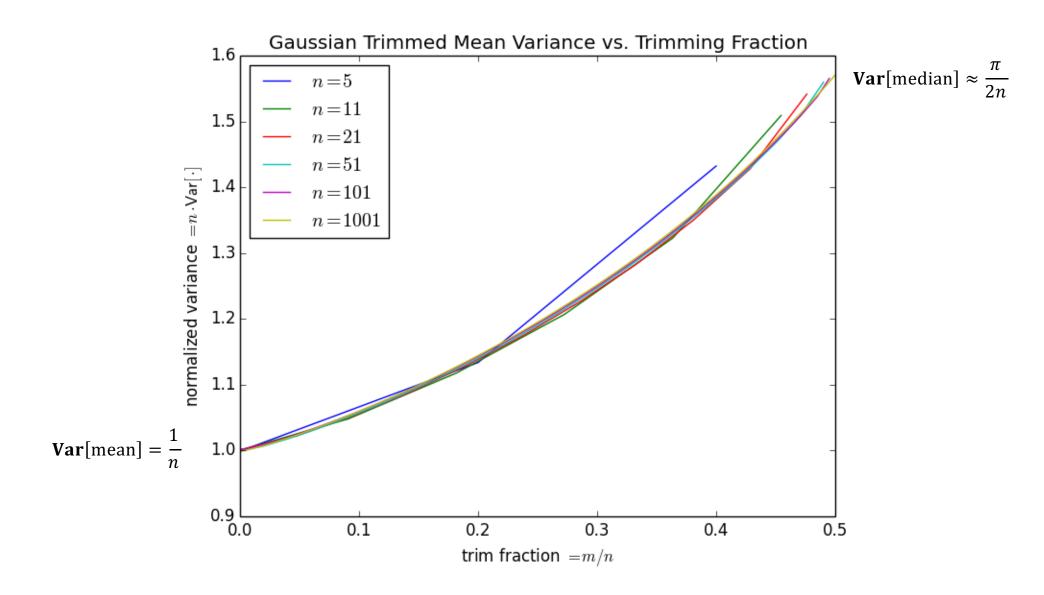
- Step 1: Obtain crude estimate $\tilde{\mu} \in [\mu \pm O(\sigma)]$.
- Step 2: Truncate data X_1, X_2, \dots, X_n to $[\tilde{\mu} \pm O(\sigma \sqrt{\log n})]$.
- Step 3: Add noise to empirical mean with scale $O\left(\frac{\sigma\sqrt{\log n}}{\epsilon n}\right)$.
- Note $\sqrt{\log n}$ factor comes from Gaussian tail bound.
- This approach doesn't extend well to heavy-tailed distributions.

Our Approach: Trimmed Mean

• Intuition: Outlier removal. Remove top m and bottom m.

Define
$$\operatorname{trim}_m : \mathbb{R}^n \to \mathbb{R}$$
 by
 $\operatorname{trim}_m(x) = \frac{x_{(m+1)} + x_{(m+2)} + \dots + x_{(n-m)}}{n-2m}$
where $x_{(1)} \le x_{(2)} \le \dots \le x_{(n)}$ is the order statistics of x .

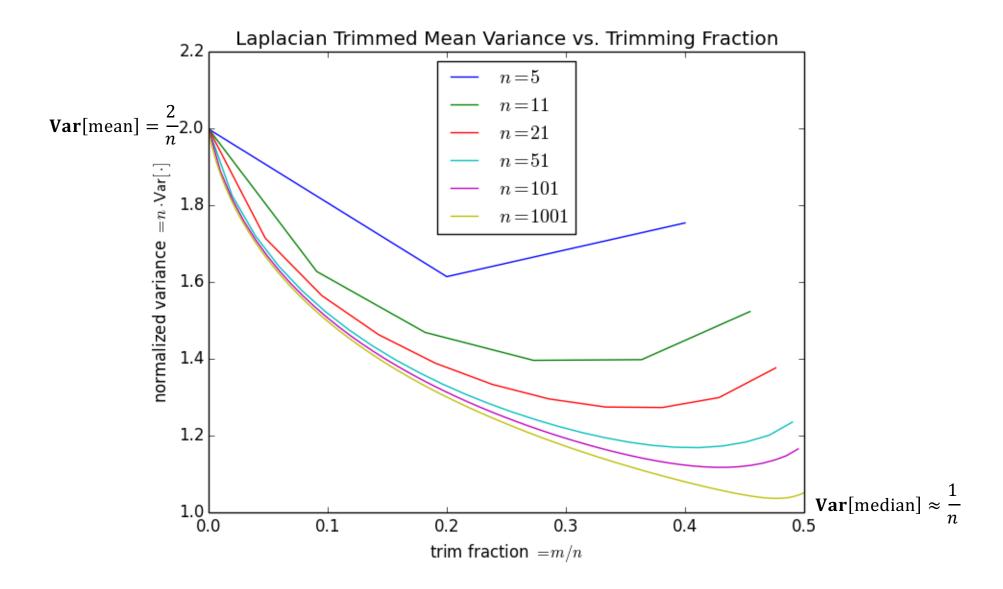
- Interpolates between mean (m = 0) and median ($m = \frac{n-1}{2}$).
- Unbiased: $\mathbf{E}[\operatorname{trim}_m(X)] = \mu \text{ for } X \leftarrow N(\mu, \sigma^2)^n$.
- Variance: $\operatorname{Var}[\operatorname{trim}_m(X)] = \frac{\sigma^2}{n} \cdot \left(1 + O\left(\frac{m}{n}\right)\right).$
- (This holds for any symmetric distribution.)

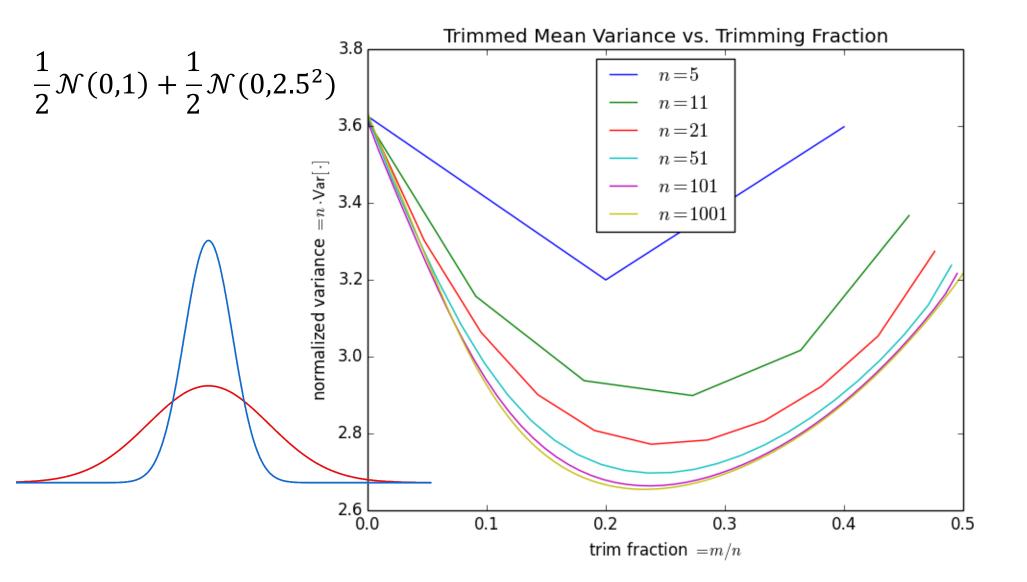


Trimmed Mean for Non-Gaussians

Trimming can actually reduce variance if data is heavy-tailed!

E.g., Laplace instead of Gaussian





Sensitivity of Trimmed Mean?

- Consider large but bounded domain: $\operatorname{trim}_m: [a, b]^n \to [a, b]$ $\operatorname{trim}_m(x) = \frac{x_{(m+1)} + x_{(m+2)} + \dots + x_{(n-m)}}{n-2m}$
- Global sensitivity: Large, but finite.

$$GS = \max_{x,x'} |\operatorname{trim}_m(x) - \operatorname{trim}_m(x')| = \frac{b-a}{n-2m}$$

• Local sensitivity: Often much smaller.

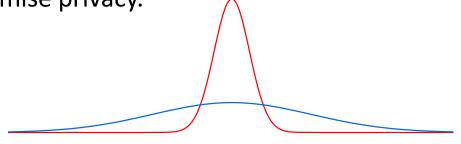
$$LS(x) = \max_{x'} |\operatorname{trim}_{m}(x) - \operatorname{trim}_{m}(x')|$$

=
$$\frac{\max\{x_{(n-m)} - x_{(m)}, x_{(n-m+1)} - x_{(m+1)}\}}{n - 2m}$$

Smooth Sensitivity

Idea: Smooth Sensitivity [NRS07]

- Can add noise proportional to global sensitivity to attain DP [DMNS06].
- We would like to be able to add noise proportional to local sensitivity.
- Problem: The local sensitivity may itself be high sensitivity. I.e., noise magnitude may compromise privacy.



- Solution: Smooth Sensitivity [Nissim-Raskhodnikova-Smith07]
- Powerful and elegant idea.
- This work: Getting more mileage out of Smooth Sensitivity.

Smooth Sensitivity [Nissim-Raskhodnikova-Smith07]

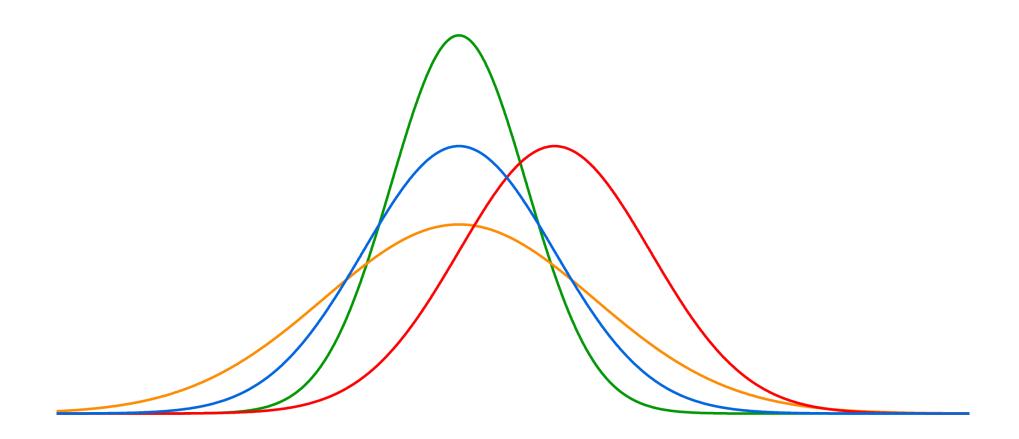
Let $f, g: X^n \to \mathbb{R}$ satisfy, for all neighbouring $x, x' \in X^n$, $|f(x) - f(x')| \le g(x)$ and $e^{-t}g(x) \le g(x') \le e^t g(x)$. Then we say g is a t-smooth upper bound on the local sensitivity of f.

Smooth sensitivity algorithm:

$$M(x) = f(x) + Z \cdot g(x)$$

- But what noise distribution Z can we use?
- To satisfy ε -DP, we need $Z \approx_{\varepsilon} Z + s$ (as usual) and also $Z \approx_{\varepsilon} e^t Z$.

Additive and multiplicative distortions



Smooth Sensitivity Distributions [NRS07]

- Cauchy: density $\propto \frac{1}{1+x^2}$, sample $Z = \frac{X}{Y}$ for i.i.d. $X, Y \leftarrow N(0,1)$.
 - Provides pure ε -DP.
 - Infinite variance, even mean not well defined!
- More generally: density $\propto \frac{1}{1+|x|^{\gamma}}$
 - Provides pure ε -DP.
 - $\mathbf{E}[|Z|^p] < \infty$ for all $p < \gamma 1$.
 - Not all moments exist (inherent for pure ε -DP).
- Laplace, Gaussian
 - Provide approximate (ε, δ) -DP. (Need to pick & pay for δ .)

New Smooth Sensitivity Distributions

- Student's T: density $\propto \left(\frac{1}{d+x^2}\right)^{\frac{d+1}{2}}$, $Z = \frac{X}{\sqrt{Y_1^2 + Y_2^2 + \dots + Y_d^2}}$ for $X, Y_1, \dots, Y_d \leftarrow N(0, 1)$.
 - Provides pure ε -DP.
 - $\mathbf{E}[|Z|^p] < \infty$ for all p < d.
- Laplace-logNormal: $Z = X \cdot e^{\sigma Y}$ for X = Laplace, Y = Gaussian
 - Provides concentrated DP.
 - $\mathbf{E}[|Z|^p] < \infty$ for all p.
- Uniform-logNormal: $Z = X \cdot e^{\sigma Y}$ for X = Uniform([-1,1]), Y = Gaussian
 - Provides concentrated DP. (Analysis not quite as good as Laplace-logNormal.)
 - $\mathbf{E}[|Z|^p] < \infty$ for all p.
- arsinhNormal: $Z = \sinh X$ for X =Gaussian
 - Provides concentrated DP. (Analysis messier than Laplace-logNormal.)
 - $\mathbf{E}[|Z|^p] < \infty$ for all p.

Aside: Concentrated Differential Privacy

- Concentrated DP is a "best of both worlds" between pure ε -DP and approximate (ε , δ)-DP.
 - Advanced composition, no "death and destruction" δ , no superfluous $\log(\frac{1}{\delta})$ factors.
- Several variants [Dwork-Rothblum16,Bun-S.16,Mironov17,Bun-Dwork-Rothblum-S.18], same underlying ideas.
 - Use Rényi divergences from information theory.

 $M \text{ is } \frac{1}{2}\varepsilon^2 \text{-CDP if, for all neighbouring } x, x',$ $\forall \alpha > 1 \qquad D_{\alpha}(M(x)||M(x')) \leq \frac{1}{2}\varepsilon^2 \alpha$ Laplace-logNormal Privacy Analysis

Laplace-logNormal: $Z = X \cdot e^{\sigma Y}$ for X = Laplace, Y = Gaussian

• Show that Z provides $\frac{1}{2}\epsilon^2$ -CDP with Smooth Sensitivity:

Theorem.
$$D_{\alpha}(Z||e^{t}Z + s) \leq \frac{1}{2}\varepsilon^{2}\alpha$$
 for all $\alpha > 1$, where
 $\varepsilon = \frac{|t|}{\sigma} + e^{\frac{3}{2}\sigma^{2}} \cdot |s|$

- logNormal deals with multiplicative distortion: $D_{\alpha}(Z||e^{t}Z) = D_{\alpha}(X \cdot e^{\sigma Y}||X \cdot e^{\sigma Y+t})$ $\leq \max_{x} D_{\alpha}(x \cdot e^{\sigma Y}||x \cdot e^{\sigma Y+t}) = D_{\alpha}(\sigma Y||\sigma Y+t) = \frac{\alpha t^{2}}{2\sigma^{2}}$
- Get pure DP for additive distortion: $D_{\infty}(Z||Z+s) \le e^{\frac{3}{2}\sigma^2}|s|$
- Apply triangle inequality (a.k.a. group privacy) to combine.

Tails of Smooth Sensitivity + CDP Distributions

All these distributions satisfying concentrated DP – Laplace-logNormal, UniformlogNormal, & arsinhNormal – have quasi-polynomial tails:

$$\mathbf{P}[|Z| > z] = e^{-\Theta(\log z)^2}$$

Moments: $\mathbf{E}[|Z|^p] = e^{\Theta(p^2)}$. (For pure DP, polynomial tails & infinite moments.) This is necessary. Lower bound:

- Group privacy: $Z \approx_{\varepsilon} Z + s \approx_{\varepsilon} e^t(Z + s) \approx_{\varepsilon} e^{2t}(Z + s) \approx_{\varepsilon} \cdots \approx_{\varepsilon} e^{kt}(Z + s)$
- $\mathbf{p} = \mathbf{P}[Z \ge z] \approx_{k\varepsilon} \mathbf{P}[e^{kt}(Z+s) \ge z] = \mathbf{P}[Z \ge e^{-kt}z-s] \ge \mathbf{P}[Z \ge 0] \ge \frac{1}{2}$

• Can set $k = \frac{\log z - \log s}{\sqrt{t}}$ and use group privacy bound:

$$D_1\left(\frac{1}{2} \| p\right) = \frac{1}{2} \log\left(\frac{1}{2p}\right) + \frac{1}{2} \log\left(\frac{1}{2(1-p)}\right) \le \frac{1}{2} k^2 \varepsilon^2$$

• Rearrange: $p \ge p(1-p) \ge \frac{1}{4}e^{-k^{2}\varepsilon^{2}} = e^{-O(\log z)^{2}}$

Smooth Sensitivity + Trimmed Mean

Smooth Algorithm for Gaussian Mean

Theorem. Let $n \ge O(\log((b-a)/\sigma)/\varepsilon)$. Then there exists a ε -DP (or $\frac{1}{2}\varepsilon^2$ -CDP) algorithm $M : \mathbb{R}^n \to \mathbb{R}$ such that, for all $\mu \in [a, b]$, we have $\mathbf{E}[(M(X) - \mu)^2] \le \frac{\sigma^2}{n} + \frac{\sigma^2}{n^2} \cdot O\left(\frac{\log\left(\frac{b-a}{\sigma}\right)}{\varepsilon} + \frac{\log n}{\varepsilon^2}\right)$ when $X \leftarrow N(\mu, \sigma^2)^n$.

- Matches previous work [Karwa-Vadhan18].
- Unknown $\sigma \in [\sigma_{min}, \sigma_{max}]: \log\left(\frac{b-a}{\sigma}\right)$ becomes $\log\left(\frac{b-a}{\sigma_{min}}\right) + \log\left(\frac{\sigma_{max}}{\sigma_{min}}\right)$
- Not specific to Gaussian data. Only use symmetry and tail bound.

Smooth Algorithm for General Means

Theorem. Let $n \ge O(\log(n(b-a)/\sigma)/\varepsilon)$. Then there exists a ε -DP (or $\frac{1}{2}\varepsilon^2$ -CDP) algorithm $M : \mathbb{R}^n \to \mathbb{R}$ such that, for all $\mu \in [a, b]$, we have $\mathbf{E}[(M(X) - \mu)^2] \le \frac{\sigma^2}{n} \cdot O\left(\frac{\log\left(n\frac{b-a}{\sigma}\right)}{\varepsilon} + \frac{1}{\varepsilon^2}\right)$ when $X \leftarrow D^n$ and D is any distribution with mean μ and variance σ^2 .

- Matches previous work [Feldman-Steinke18].
- This result uses the same algorithm as for Gaussians!
- Algorithm matches distribution and can interpolate between results.

Smooth Sensitivity Algorithm

Let $f, g: X^n \to \mathbb{R}$ satisfy, for all neighbouring $x, x' \in X^n$, $|f(x) - f(x')| \le g(x)$ and $e^{-t}g(x) \le g(x') \le e^t g(x)$. Then we say g is a t-smooth upper bound on the local sensitivity of f.

Smooth sensitivity algorithm: $M(x) = f(x) + Z \cdot g(x)$

For $X \leftarrow N(\mu, \sigma^2)$ and $\mathbf{E}[Z] = 0$, $\mathbf{E}[(M(X) - \mu)^2] = \mathbf{E}[(f(X) - \mu)^2] + \mathbf{E}[g(X)^2] \cdot \mathbf{Var}[Z]$ Non-private error of trimmed mean $\frac{\sigma^2}{n} \cdot \left(1 + O\left(\frac{m}{n}\right)\right) \qquad O\left(\frac{1}{\varepsilon^2}\right)$ $\mathbf{E}[(M(X) - \mu)^2] = \mathbf{E}[(f(X) - \mu)^2] + \mathbf{E}[g(X)^2] \cdot \mathbf{Var}[Z]$ (27)

Smooth Sensitivity of Trimmed Mean

- Consider large but bounded domain: $\operatorname{trim}_m: [a, b]^n \to [a, b]$ $\operatorname{trim}_m(x) = \frac{x_{(m+1)} + x_{(m+2)} + \dots + x_{(n-m)}}{n - 2m}$
- Local sensitivity:

$$LS(x) = \frac{\max\{x_{(n-m)} - x_{(m)}, x_{(n-m+1)} - x_{(m+1)}\}}{n-2m}$$

• Smooth sensitivity:

$$g(x) = SS(x,t) = \max_{\substack{x' \\ 0 \le k \le n}} e^{-kt} \max_{\substack{0 \le \ell \le k+1}} \frac{x_{(n-m+k+1-\ell)}^{x'} - x_{(m+1-\ell)}}{n-2m}$$

where $x_{(1-i)} = a$ and $x_{(n+i)} = b$ for $i \ge 1$.

Smooth Sensitivity of Trimmed Mean Smooth sensitivity:

$$g(x) = SS(x,t) = \max_{x'} e^{-t \|x'-x\|} LS(x')$$
$$= \max_{0 \le k \le n} e^{-kt} \max_{0 \le \ell \le k+1} \frac{x_{(n-m+k+1-\ell)}(x') - x_{(m+1-\ell)}}{n-2m}$$
where $x_{(1-i)} = a$ and $x_{(n+i)} = b$ for $i \ge 1$.

Loose (but sufficient) bound:

$$g(x)^{2} \leq \frac{\left(x_{(n)} - x_{(1)}\right)^{2} + e^{-mt}(b-a)^{2}}{(n-2m)^{2}}$$

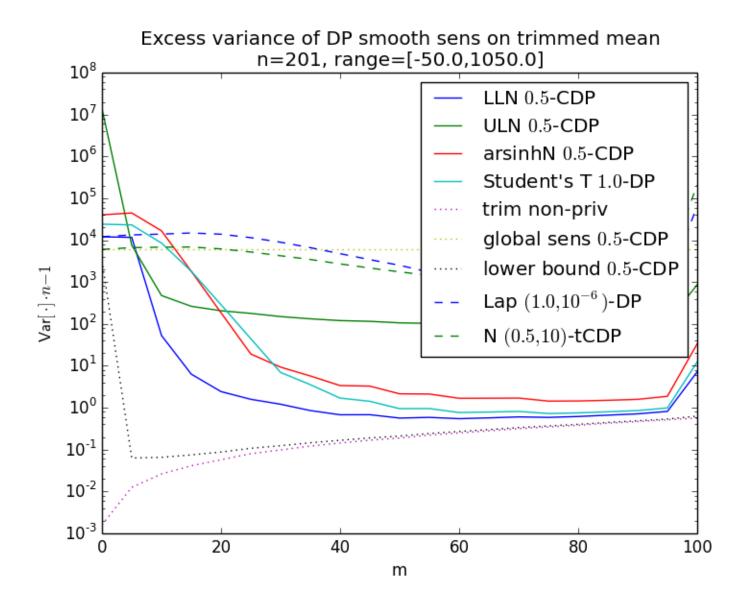
For $X \leftarrow N(\mu, \sigma^{2})$,
$$\mathbf{E}[g(X)^{2}] \leq \frac{\sigma^{2} \cdot O(\log n) + e^{-mt}(b-a)^{2}}{(n-2m)^{2}}$$

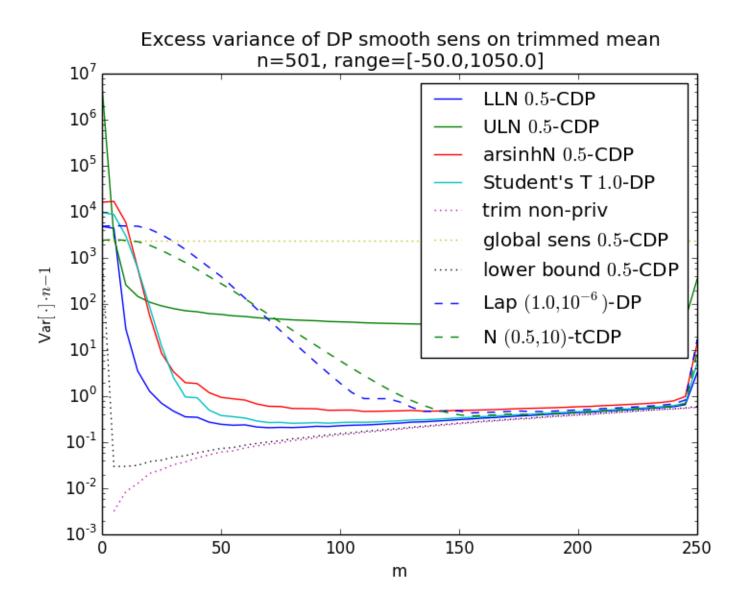
Smooth Algorithm for Gaussian Mean

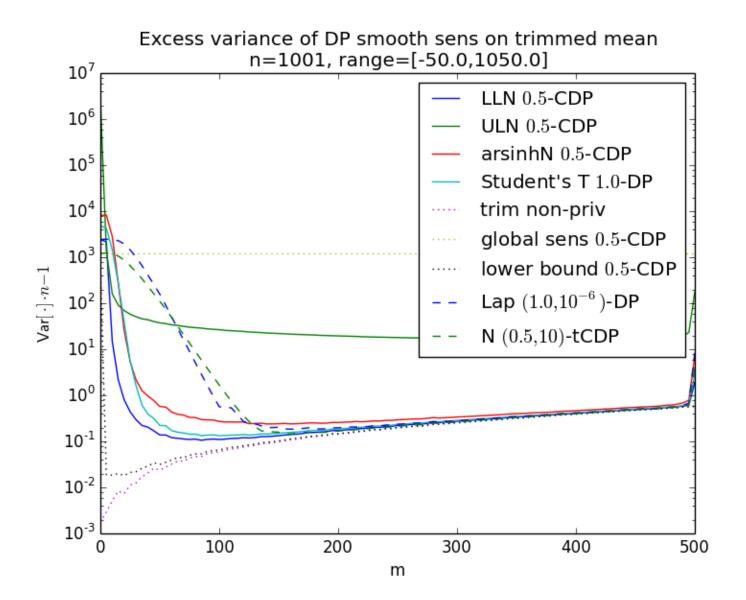
Theorem. Let $n \ge O(\log((b-a)/\sigma)/\varepsilon)$. Then there exists a ε -DP (or $\frac{1}{2}\varepsilon^2$ -CDP) algorithm $M : \mathbb{R}^n \to \mathbb{R}$ such that, for all $\mu \in [a, b]$, we have $\mathbf{E}[(M(X) - \mu)^2] \le \frac{\sigma^2}{n} + \frac{\sigma^2}{n^2} \cdot O\left(\frac{\log\left(\frac{b-a}{\sigma}\right)}{\varepsilon} + \frac{\log n}{\varepsilon^2}\right)$ when $X \leftarrow N(\mu, \sigma^2)^n$.

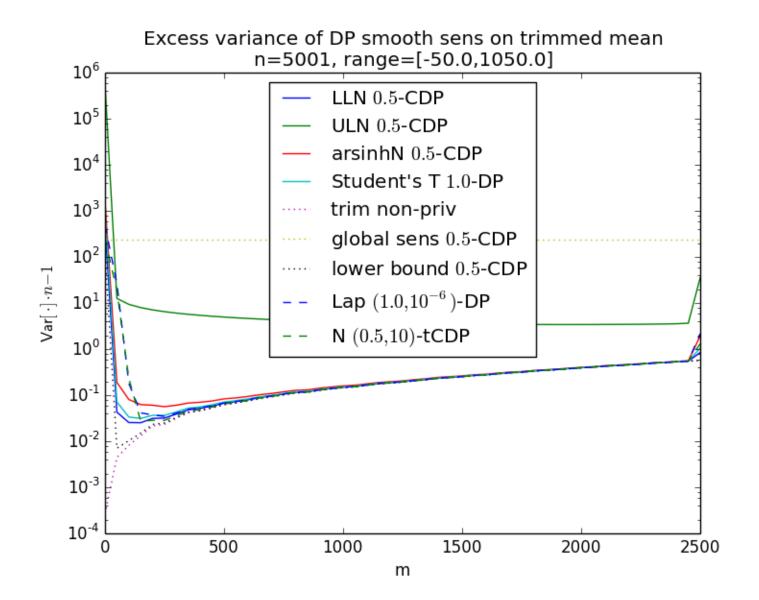
- Matches previous work [Karwa-Vadhan18].
- Unknown $\sigma \in [\sigma_{min}, \sigma_{max}]: \log\left(\frac{b-a}{\sigma}\right)$ becomes $\log\left(\frac{b-a}{\sigma_{min}}\right) + \log\left(\frac{\sigma_{max}}{\sigma_{min}}\right)$
- Not specific to Gaussian data. Only use symmetry and tail bound.

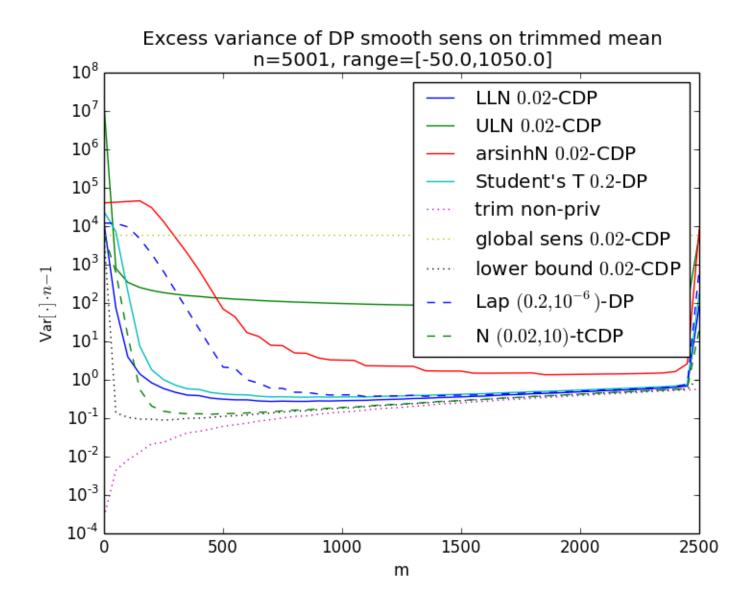
Some Experimental Plots!











Conclusion

- Smooth Sensitivity is great!
- New distributions for use with smooth sensitivity.
- Application to mean estimation.

Further work:

- Sharper upper/lower bounds for Gaussian mean estimation?
- Other applications of smooth sensitivity?
- E.g., scale estimation, confidence intervals [Karwa-Vadhan18], model fitting/regression, multivariate distributions
- Other noise distributions (or better analyses of these ones).

Thanks!