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Abstract

We propose truncated concentrated differential privacy (tCDP), a refinement of differential
privacy and of concentrated differential privacy. This new definition provides robust and efficient
composition guarantees, supports powerful algorithmic techniques such as privacy amplification
via sub-sampling, and enables more accurate statistical analyses. In particular, we show a
central task for which the new definition enables exponential accuracy improvement.

1 Introduction

Differential privacy (DP) is a mathematically rigorous definition of privacy, which is tailored to
analysis of large datasets and is equipped with a formal measure of privacy loss [DMNS06, Dwo06].
Differentially private algorithms cap the permitted privacy loss in any execution of the algorithm
at a pre-specified parameter ε, providing a concrete privacy/utility tradeoff. A signal strength
of differential privacy is the ability to reason about cumulative privacy loss under composition of
multiple analyses.

Roughly speaking, differential privacy ensures that the outcome of any analysis on a dataset x
is distributed very similarly to the outcome on any neighboring dataset x′ that differs from x in
just one element (corresponding to one individual). That is, differentially private algorithms are
randomized, and the max divergence between these two distributions (the maximum log-likelihood
ratio for any event) is bounded by the privacy parameter ε. This absolute guarantee on the
maximum privacy loss is now sometimes referred to as “pure” differential privacy.

A popular relaxation, “approximate” or (ε, δ)-differential privacy [DKM+06], roughly guaran-
tees that with probability at least 1− δ the privacy loss does not exceed ε. This relaxation allows a
δ probability of catastrophic privacy failure, and thus δ is typically taken to be “cryptographically”
small. Although small values of δ come at a price in privacy, the relaxation nevertheless frequently
permits asymptotically better accuracy than pure differential privacy (for the same value of ε).
Indeed, the central advantage of relaxing the guarantee is that it permits an improved and asymp-
totically tight analysis of the cumulative privacy loss incurred by composition of multiple (pure or
approximate) differentially private mechanisms [DRV10].

Composition is the key to differential privacy’s success, as it permits the construction of complex
– and useful – differentially private analyses from simple differentially private primitives. That is,
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it allows us to “program” in a privacy-preserving fashion. Optimizing for composition, and being
willing to live with high probability bounds on privacy loss rather than insisting on worst-case
bounds, led to the introduction of concentrated differential privacy (CDP), a guarantee incompa-
rable to the others, permitting better accuracy than both without compromising on cumulative
privacy loss under composition [DR16, BS16]. Intuitively, CDP requires that the privacy loss
have small expectation, and tight concentration around its expectation. There is no hard threshold
for maximal privacy loss. Instead, the probability of large losses vanishes at a rate that roughly
parallels the concentration of the Gaussian distribution. This framework exactly captures the type
of privacy loss that occurs under composition of (pure and approximate) DP mechanisms. CDP
improves on approximate DP by “cutting corners” in a way that has no privacy cost under high
levels of composition. For certain approximate DP algorithms, such as the Gaussian mechanism,
when a δ-probability failure occurs, there is no privacy catastrophe. Rather, the most likely situa-
tion is that the privacy loss is still bounded by 2ε. More generally, for any k ≥ 1, the risk that the
privacy loss exceeds kε is δΩ(k2). In such situations, the

√
log(1/δ) multiplicative loss in accuracy

one obtains in the analysis of this algorithm is a high price to pay to avoid a small increase in
privacy loss. Under high levels of composition of approximate DP mechanisms, the privacy losses
of each individual mechanism are forced to be “artificially” low in order to control the cumulative
loss. This means that small lapses in these artificially low losses are not so consequential, and
literally do not add up to much in the risk of exceeding the desired cumulative loss.

Finally, in addition to providing better accuracy than pure and approximate DP, CDP has a
simple optimal composition theorem, computable in linear time. This stands in sharp contrast to
the situation with approximate DP, for which computing optimal composition bounds is computa-
tionally intractable (#P-hard) [MV16].

With these important advantages, concentrated DP also has limitations:

1. “Packing”-based lower bounds [HT10, BS16] imply inherent limitations on the accuracy that
can be obtained under CDP for certain tasks. These lower bounds do not apply to ap-
proximate DP (because of the δ-probability “escape hatch”), and there are tasks where the
accuracy of CDP data analyses is worse than what can be obtained under approximate DP.

2. Unlike both pure and approximate DP, CDP does not support “privacy amplification” via sub-
sampling [KLN+11, Smi09]. This type of privacy amplification is a powerful tool, as demon-
strated by the recent work of Abadi et al. in differentially private deep learning [ACG+16].
While their privacy analysis utilizes a CDP-like view of privacy loss, their use of subsampling
for privacy amplification means that their algorithm cannot be analyzed within the framework
of CDP.

With the above progress and challenges in mind, we propose the notion of truncated concentrated
differential privacy (tCDP) to give us the best of all words.

A new framework. Loosely speaking, CDP restricts the privacy loss to be at least as concen-
trated as a Gaussian. tCDP relaxes this requirement. Informally, it only requires Gaussian-like
concentration up to a set boundary, specified by a number of standard deviations. Beyond this
boundary, the privacy loss can be less concentrated than a Gaussian (but we still require subexpo-
nential concentration). The formal definition uses two parameters: ρ, which (roughly) controls the
expectation and standard deviation of the privacy loss, and ω, which (roughly) controls the number
of standard deviations for which we require Gaussian-like concentration. The privacy guarantee is
stronger the smaller ρ is and the larger ω is.

The formal definition uses Rényi divergences to restrict the privacy loss random variable:
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Definition 1. Let ρ > 0 and ω > 1. A randomized algorithm M : X n → Y satisfies ω-truncated
ρ-concentrated differential privacy (or (ρ, ω)-tCDP) if, for all neighboring x, x′ ∈ X n,1

∀α ∈ (1, ω) Dα

(
M(x)

∥∥M(x′)
)
≤ ρα,

where Dα (·‖·) denotes the Rényi divergence [Rén61, vEH14] of order α (in nats, rather than bits).2

The definition of tCDP is a direct relaxation of zero-concentrated differential privacy (zCDP) [BS16]
and is closely related to Rényi differential privacy [Mir17]. In particular, setting ω = ∞ exactly
recovers the definition of ρ-zCDP. Clearly, decreasing ω relaxes the definition of (ρ, ω)-tCDP. See
Section 1.3 for further discussion of the relationship between tCDP and prior definitions.

CDP: a recap. The addition of Gaussian noise drawn fromN (0,
(

∆f
ε

)2
) is a universal mechanism

for Concentrated Differential Privacy, yielding a privacy loss random variable Z that is subgaussian
with standard λ = ε, and with expected privacy loss µ = ε2/2. Formally, we have the following
bound on the moment generating function:

∀λ ∈ R E[eλ(Z−µ)] ≤ eε2λ2/2. (1)

This implies that Pr[Z−µ ≥ kε] ≤ e−k2/2, where the connection between bounds on high moments
and tail bounds goes via an application of Markov’s inequality:

Pr[(Z − µ) ≥ kε] = Pr[e(λ/ε)(Z−µ) ≥ eλk] ≤ E[e(λ/ε)(Z−µ)]

eλk
. (2)

This is minimized when λ = k/ε, yielding a probability bounded by e−k
2/2.

Subsampling under CDP and tCDP. Given a dataset of size n, let us choose a random
subset of size sn, for s ∈ (0, 1), as a preprocessing step before applying a differentially private
algorithm. In analogy to the situation for pure and approximate differential privacy, we would
expect subsampling to decrease the privacy loss roughly by a factor of s. More precisely we would
hope that the new standard should be O(sε), with the mean reduced by a factor of roughly s2. Let
us see what actually happens.

Let x be a dataset of n zeroes, and let y be a neighboring dataset of n− 1 zeroes and a single
one. Consider the sensitivity 1 query q, “How many 1’s are in the dataset?” Let Z be a random
variable with distribution N (0,

(
1
ε

)2
). Let A be the event that the response received is at least

1 + z, where Pr[Z ≥ z] ≤ e−k
2/2 for a fixed k > 0. Letting σ2 =

(
∆q
ε

)2
= 1/ε2, when the dataset

is y the output event A corresponds to the sampling event Z ≥ kσ, and when the dataset is x the
output event A corresponds to the sampling event Z ≥ (k+ ε)σ. A rough calculation immediately
yields:

Pr[A|y]

Pr[A|x]
≈ e−k

2/2

e−(k+ε)2/2
= eεk+ε2/2. (3)

This corresponds to a privacy loss of εk above the mean (ε2/2). Let qx denote the probability of
output event A after subsampling and noise addition, when the dataset is x and the probability is

1x and x′ are neighboring (denoted x ∼ x′) if they differ on a single entry – i.e. only one person’s data is changed.
2The Rényi divergence of order α between two distributions P and Q over a sample space Ω (with P � Q) is

defined to be Dα (P‖Q) = 1
α−1

log
∫

Ω
P (y)αQ(y)1−αdy. Here log denotes the natural logarithm.
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taken both over the subsampling and the draw from the Gaussian, and let qy be defined analogously.
Then qx = px because the subsampled dataset (of course) still contains only zeroes and so again
the probability of the output event is the same as the probability that the noise exceeds (k + ε)σ.
However, qy is more complicated: with probability s the single 1 is in the subsample, in which case
the output event corresponds to the noise event Z ≥ kσ, and with probability (1−s) the subsample
does not capture the 1, in which case the output event corresponds to the noise event Z ≥ (k+ε)σ.
Letting η = e−k

2/2 we get:

qy
qx
≈ sη + (1− s)ηe−εke−ε2/2

ηe−εke−ε2/2
≈ seεk + (1− s).

When εk < 1 this is (roughly) esεk, corresponding to a privacy loss of sεk above the (new) mean,
as desired. But when k ≥ 1/ε the constraint is violated; thus Concentrated Differential Privacy
does not fully benefit from subsampling and the subgaussian standard does not decrease from ε to
sε. With this in mind tCDP does the next best thing: it ensures that we get the desired reduction
for all k less than a fixed bound of approximately ωε. In the case of the (subsampled) Gaussian,
this bound is roughly 1/ε. For this reason we parameterize tCDP with the expected privacy loss,
usually denoted ρ, and an upper bound, usually denoted ω, that controls the moments for which
the subgaussian property must apply. Specifically, tCDP guarantees that we can indeed bound the
probability on the left hand side of Equation 2 by e−k

2/2 for all k ≤ ε(ω − 1). (The “−1” comes
from a technicality that arises in the translation from bounding the Rényi divergence to bounding
the moment generating function.)

The most closely related work in the literature is the moments accountant technique of [ACG+16],
which analyzes the integer positive moments of the Gaussian mechanism under subsampling. They
obtain similar bounds to those obtained here, although they collapse higher moments into an er-
ror term, δ, and present their results in terms of (ε, δ)-differential privacy. Our bounds apply to
all moments and all mechanisms ensuring Concentrated Differential Privacy. Moreover, by adher-
ing to the framework of CDP we are able to circumvent the #P-hardness of computing optimal
composition bounds.

Group privacy. Concentrated Differential Privacy automatically yields group privacy, replacing
the standard ε with the new standard gε for a group of size g, and so bounding the privacy loss
for a group of size g corresponds to bounding the gth moment of the original privacy loss random
variable. (ρ, ω)-tCDP enjoys the same property, but only for groups of size at most εω, since that
is the largest moment for which the bound in Equation 2 is required to hold. Naturally, the bounds
on the moments of the group privacy loss random variable only hold for λ ≤ ε(ω− 1)/g (otherwise
we could “unroll” this bundling into groups and bound higher order moments beyond ω).

Summary of Results. We introduce and perform a detailed study of tCDP. Beyond our intro-
duction of this new framework for privacy-preserving data analysis, our contributions include:

• Robust guarantees. We show optimal and efficiently-computable composition bounds for
tCDP. Examining group privacy, we show strong bounds for groups of size at most O(

√
ρ ·ω).

For larger groups, we show weaker but nontrivial bounds. These bounds for large groups also
enable us to prove “packing-based” error lower bounds that show our results are tight.

• Privacy amplification via subsampling. We show that the privacy guarantees of tCDP
can be amplified by subsampling. In a nutshell, sampling an s-fraction of the individuals in the
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dataset before running a (ρ, ω)-tCDP mechanism gives (O(ρs2), ω′)-tCDP, where ω′ is close
to the original ω. Privacy amplification is a powerful technique in data-rich regimes (see e.g.
[ACG+16]). We note that for CDP, subsampling does not improve the privacy parameters.
The proof that tCDP is amplified by subsampling proceeds via a delicate analysis of the
privacy loss random variable, and is one of our primary technical contributions.

• A tCDP toolkit. We construct tCDP mechanisms for basic data analysis tasks. These mech-
anisms, together with tight composition bounds and privacy amplification via subsampling,
provide a rich toolkit for tCDP data analysis. First, we introduce a canonical noise-adding
mechanism for answering low-sensitivity queries. To guarantee tCDP, we use noise drawn
from a novel “sinh-normal” distribution. The tails of this noise distribution are exponentially
tighter than a Gaussian (so the probability of large errors is exponentially smaller). Other
basic tCDP tools we introduce include adding Gaussian noise with data-dependent variance,
and a mechanism for answering point queries with improved accuracy.

• The power of tCDP. Building on the new tools described above, we turn to more advanced
data analysis tasks. As our main additional contribution, we consider the following “Gap-
Max” task capturing optimization over a discrete set. Given a collection of k low-sensitivity
queries and a real parameter GAP > 0, we want to identify the query whose answer is
maximal, under the promise that its answer is at least GAP larger than the second-largest
answer. We want as weak a promise as possible, i.e. to minimize GAP (as a function of
k). We show a tCDP algorithm when GAP is as small as (roughly) O(log log k). This
is an exponential improvement over what is possible using CDP (or pure DP), and can
be a significant improvement over the bounds obtainable for approximate DP when δ is
cryptographically small.

The Gap-Max optimization task has many applications in the design of privacy-preserving
algorithms. We show it implies tCDP algorithms for releasing histograms over k bins and for
answering threshold queries, with improved accuracy bounds in both cases (see below).

Organization. The remainder of the Introduction is organized as follows. Properties of tCDP
flowing from the definition are spelled out in Section 1.1. In Section 1.2 we describe our results on
tCDP mechanisms: building blocks and more advanced algorithms. Section 1.3 provides a detailed
discussion of the qualitative and quantitative relationships between tCDP and earlier variants of
differential privacy. For the remainder of the paper, Section 2 contains additional definitions and
an analysis of group privacy for groups of size greater than ω. Section 3 contains the details on
amplification via subsampling. Section 4 discusses the sinh-normal noise distribution and shows
that the addition of noise from an appropriately scaled version of this distribution is a canonical
mechanism for achieving tCDP. Section 5 shows that tCDP enables an analog of the smooth
sensitivity framework of Nissim, Raskhodnikova, and Smith [NRS07], permitting the addition of
less noise when the dataset is “nice,” without eroding the privacy guarantees. Section 6 provides
several applications of tCDP using more sophisticated algorithms than simple noise addition. This
section contains our above-mentioned results on the Gap-Max problem. Finally, Section 7 shows
the optimality of our algorithmic results by proving matching lower bounds.

1.1 Properties of tCDP

Several important guarantees follow from the definition of tCDP.
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Composition and postprocessing. tCDP provides tight and tractable composition bounds,
and is also robust to postprocessing:

Lemma 2 (Composition & Postprocessing). Let M : X n → Y satisfy (ρ, ω)-tCDP. Let M ′ :
X n × Y → Z be such that M ′(·, y) : X n → Z satisfies (ρ′, ω′)-tCDP for all y ∈ Y. Define
M ′′ : X n → Z by M ′′(x) = M ′(x,M(x)). Then M ′′ satisfies (ρ+ ρ′,min{ω, ω′})-tCDP.

Group privacy. tCDP protects the privacy of groups of size at most εω. In particular, (ρ, ω)-
tCDP for individuals implies (ρ · g2, ω/g)-tCDP for groups of size g, and this is tight.

For larger groups, tCDP still provides gracefully degrading privacy protection, but the rate of
degradation is more rapid (exponential, rather than quadratic; Section 2.2, Proposition 9). In com-
parison, for (ε, δ)-differential privacy, privacy is guaranteed for groups of size at most O(log(1/δ)/ε),
with no protection at all for larger groups. As it turns out, the weaker protections afforded to large
groups can be a blessing in disguise, as the packing lower bounds that bedevil CDP are consequently
substantially weaker for tCDP (see Section 7).

Privacy amplification. We show that the privacy guarantees of tCDP are amplified when sam-
pling a s-fraction of the dataset entries:

Proposition 3 (Privacy Amplification by Subsampling). Let M : X n → Y satisfy (ρ, ω)-tCDP.
Define M ′ : XN → Y to be M ′(x) = M(xS) where S ⊂ [N ] with |S| = n is uniformly random and,
xS ∈ X n is the restriction of x ∈ XN to the entries specified by S. Let s = n/N be the subsampling
fraction. Then M ′ satisfies (O(ρs2),Ω(min{ω, log(1/s)/ρ}))-tCDP.

Intuitively, for an initial ω that wasn’t too large (say ω ≤ 1/ρ), subsampling maintains ω′ =
Ω(ω). Up to constant factors, this result is optimal. In contrast, subsampling cannot improve
the guarantees of a CDP mechanism: s-fraction subsampling of a ρ-CDP algorithm is still at
best ρ-CDP. Meanwhile, approximate (ε, δ)-differential privacy with s-fraction subsampling yields
(ε̂, sδ)-differential privacy with ε̂ = log(1 + s(eε − 1)) ≈ sε (e.g., [BNSV15]).

1.2 tCDP Mechanisms

What useful algorithmic techniques are compatible with tCDP? Of course, all techniques that are
compatible with CDP and pure differential privacy immediately carry over to tCDP. We show that
additional tools, which capture much of the power of approximate differential privacy, are amenable
to analysis within the framework of tCDP.

Additive noise. Perhaps the most basic challenge to consider is answering a single low-sensitivity
query q : X n → R subject to tCDP. Let ∆ be the global sensitivity of q, i.e. maxx∼x′ |q(x)−q(x′)| ≤
∆. For DP and its previously-studied relaxations, the canonical mechanisms for this basic task use
additive noise, drawn from the appropriate distribution (e.g. Laplace for pure DP or Gaussian for
CDP), scaled to the query’s sensitivity and to the privacy parameter. Similarly, we propose the
“sinh-normal” as a canonical noise distribution for tCDP:

Proposition 4 (Sinh-Normal Mechanism). Let q : X n → R have sensitivity ∆. Define the sinh-
normal mechanism, with parameters ρ > 0 and β > ∆/

√
ρ, to be the additive noise mechanism that

on input x ∈ X n releases q(x) + Z, where

Z ← β · arsinh

(
1

β
· N (0,∆2/2ρ)

)
. (4)
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This mechanism satisfies (O(ρ), ω = Ω(β/∆))-tCDP.

Here, the inverse hyperbolic sine function — arsinh(y) = log(y+
√
y2 + 1) — is an even sigmoidal

function, with arsinh(y) ≈ y for |y| ≈ 0 and arsinh(y) ≈ sign(y) · log |y| for |y| � 0. Hence, the sinh-
normal distribution closely resembles a Gaussian with comparable variance up to noise values of
magnitude roughly β. Beyond this boundary, the tails decay exponentially faster than a Gaussian,
roughly as e−e

t
√
ρ/∆

, where t is the noise magnitude and β is taken to be as small as possible.
The sinh-normal that guarantees (ρ, ω)-tCDP and the Gaussian that guarantees ρ-CDP are

similar for noise values of magnitude smaller than (ω · ∆) For larger noise values the tails of the
sinh-normal are exponentially tighter, which results in better accuracy than the Gaussian. While
this difference may not be crucial when answering a single query (since these are low-probability
events), it becomes important when one needs to bound the maximum of many independent samples
from the sinh-normal distribution.

Stable selection. Optimizing over a discrete set is a basic task for privacy-preserving algorithms.
We consider the following formulation of this problem: we are given a collection of sensitivity-1
functions q1, . . . , qk : X n → R, a sensitive dataset x ∈ X n, and a real parameter GAP > 0. Let
i∗ = argmaxi∈[k] qi(x). The stable selection problem is to identify i∗ with high probability under
the promise that

qi∗(x) ≥ max
i∈[k]\{i∗}

qi(x) + GAP .

That is, we are promised that the largest qi(x) is at least GAP larger than the second largest.
Weaker notions of privacy permit smaller values of GAP, which in turn is a less stringent condition
on how stable the maximizer needs to be to perform selection. Focusing on the dependence of GAP
on the number of choices k, we know that (ε, 0)-differential privacy requires GAP = Θ(log(k)/ε),
whereas ρ-zCDP requires GAP = Θ(

√
log(k)/ρ) and (ε, δ)-differential privacy allows for GAP =

Θ(log(1/δ)/ε) — independent of k.
We show a (tight) bound of GAP = Θ(ω · log log k) for stable selection under tCDP:

Proposition 5. Let ρ ∈ (0, 1) and ω ≥ 1/
√
ρ. Then there is a (ρ, ω)-tCDP algorithm for stable

selection as long as GAP ≥ O
(
ω · log

(
1 +

√
log k
ω
√
ρ

))
.3

This result demonstrates an exponential savings over CDP and pure differential privacy. This
bound is incomparable to the Θ(log(1/δ)/ε) achieved by (ε, δ)-differential privacy. While the
log log k term introduces a (mild) dependence on the number of functions, it may often be dominated
by log(1/δ) for reasonable choices of k and δ. Stable selection is an extremely versatile primitive
that already captures the stability arguments used in many prior works in approximate differential
privacy. As an example application, we can use stable selection to design a tCDP algorithm for
releasing a histogram over k bins with `∞ error O(log log k). Similarly, we can answer threshold
queries with error O(log log k). A packing argument using weak group privacy (Corollary 38)
shows that Proposition 5 is optimal.

We prove Proposition 5 as a consequence of a generic construction that allows us to convert
any additive noise mechanism into a solution to the stable selection problem, while preserving
whatever notion of privacy the original noise mechanism satisfies. The required gap corresponds to
the tail behavior of the additive noise. In particular, we recover all of the aforementioned results
by applying this transformation with Laplace noise, Gaussian noise, and truncated Laplace noise,
respectively.

3Note that if ω &
√

log(k)/ρ, then this expression becomes
√

log(k)/ρ, matching the bound for ρ-zCDP.
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1.3 Relationship to Prior Definitions

The differences between the various flavors of differential privacy — pure differential privacy, ap-
proximate differential privacy, concentrated differential privacy, and tCDP — come down to how
they treat very low probability events. That is, for neighboring inputs x and x′ and a set of
outcomes S, how are P [M(x) ∈ S] and P [M(x′) ∈ S] related when both are small?

Pure (ε, 0)-differential privacy applies the same strict multiplicative guarantee to all events,
regardless of how small their probability. Meanwhile, approximate (ε, δ)-differential privacy simply
“ignores” events with probability less than δ. CDP, tCDP, and Rényi differential privacy (RDP)
fall somewhere in between; no events are completely ignored, but the requirements placed on low
probability events significantly relax those of pure differential privacy.

A helpful way to characterize these definitions is in terms of tail bounds on the privacy loss.
Recall that the privacy loss of a randomized algorithm M for neighboring inputs x and x′ is defined
to be the random variable Z = f(M(x)) where f(y) = log(P [M(x) = y]/P [M(x′) = y]).

• Pure (ε, 0)-differential privacy requires that the privacy loss is bounded: Z ≤ ε.

• ρ-zCDP requires that Z is subgaussian — that is, the tail behaviour of Z should be like that
of N (ρ, 2ρ), with P [Z > t+ ρ] ≤ e−t2/(4ρ) for all t ≥ 0.

• (ρ, ω)-tCDP also requires Z to be subgaussian near the origin, but only subexponential in
its tails. That is, as with ρ-zCDP, we have P [Z > t+ ρ] ≤ e−t

2/(4ρ) for 0 ≤ t ≤ 2ρ(ω − 1).
But for t > 2ρ(ω− 1), we get a weaker subexponential tail bound of the form P [Z > t+ ρ] ≤
e(ω−1)2ρ · e−(ω−1)t.

• (ω, τ)-RDP [Mir17] requires Dα (M(x)‖M(x′)) ≤ τ for all α ≤ ω. Recall that (ρ, ω)−tCDP
ensures that Dα (M(x)‖M(x′)) ≤ ρα for all α ≤ ω. It is helpful to compare the definitions
when τ = ρω. In this case both RDP and tCDP ensure Dα (M(x)‖M(x′)) ≤ ρω for all α ≤ ω.
However, tCDP in addition requires Dα (M(x)‖M(x′)) ≤ ρα for all α in the interval (1, ω).

In terms of tail bounds, RDP requires the privacy loss Z to be subexponential. That is,
P [Z > t+ τ ] ≤ e−(ω−1)t. The definition of tCDP requires a similar subexponential tail bound,
but in addition requires subgaussian behavior for values of t that are not too large.

• Up to constant factors, (ε, δ)-differential privacy is equivalent to requiring P [Z > ε] ≤ δ.

• The notion δ-approximate ρ-zCDP [BS16] was proposed as a unification of CDP and ap-
proximate DP. This definition requires there to be an event E occuring with probability at
least 1− δ such that the privacy loss conditioned on E is subgaussian. While this definition
permits simple composition and stable selection algorithms, its behavior under subsampling
is less clear.

Since (ρ,∞)-tCDP is equivalent to ρ-zCDP, (ε, 0)-differential privacy implies (1
2ε

2,∞)-tCDP
[DR16, BS16]. Conversely, tCDP implies a family of (ε, δ)-differential privacy guarantees:

Lemma 6. Suppose M satisfies (ρ, ω)-tCDP. Then, for all δ > 0 and all 1 < α ≤ ω, M satisfies
(ε, δ)-differential privacy with

ε =

{
ρ+ 2

√
ρ log(1/δ) if log(1/δ) ≤ (ω − 1)2ρ

ρω + log(1/δ)
ω−1 if log(1/δ) ≥ (ω − 1)2ρ

.
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Figure 1: Caricatures of privacy loss tail bounds permissible under each formulation of differential
privacy.

Parameter settings. With the above comparisons in mind, one can think of the ρ parameter
as analogous to the value 1

2ε
2 for a pure (ε, 0)-DP (or approximate (ε, δ)-DP for sufficiently small

δ) algorithm, and similar to the ρ parameter in CDP. As discussed above, the truncation point ω
controls the maximal moment for which the bound in Equation 2 is required to hold, which in turn
specifies the maximal size of groups that receive meaningful group privacy protection.

Adopting the convention that “meaningful” privacy corresponds to ε = 1, pure ε-DP gives
meaningful privacy protections for groups of size 1/ε. For CDP and tCDP this corresponds to
groups of size

√
1/2ρ = (1/ε). Recalling that tCDP protects groups of size roughly

√
ρ · ω, an apt

choice for ω would thus be anything greater or equal to roughly 1/
√

2ρ.
This choice of ω provides a comparable level of protection to that of CDP for events that

don’t have tiny probabilities. We note that the probabilities of larger privacy losses still vanish
exponentially quickly (as compared with the subgaussian guarantee of CDP).

We note that privacy amplification via subsampling reduces ρ to a smaller value ρ′, but results
in a new ω′ ≈ ω that is roughly unchanged (see Proposition 3). After subsampling it can be the
case that ω′ � 1/ρ′. This is reasonable in the context of composition, where many mechanisms
with very small privacy losses are composed, and the primary concern is the global privacy loss
under this composition. Recall that while the ρ parameter degrades under composition, ω does
not (see Lemma 2). Thus, the value of ω for each individual mechanism can be set with an eye
towards the total privacy loss under composition. Subsampling will not improve ω, but neither will
composition degrade it.

2 Definition and Basic Properties

We will work with the following definition.

Definition 7. A mechanism M : X n → Y satisfies ω-truncated ρ-concentrated differential privacy
(abbreviated (ρ, ω)-tCDP) if, for all x, x′ ∈ X n differing in a single entry,

∀α ∈ (1, ω) Dα

(
M(x)

∥∥M(x′)
)
≤ ρα.

9



Here Dα (·‖·) denotes the Rényi divergence of order α. For distributions P and Q on Ω it is
defined by

Dα (P‖Q) =
log
(∫

Ω P (y)αQ(y)1−αdy
)

α− 1
=

log

(
E

y←P

[(
P (y)
Q(y)

)α−1
])

α− 1
=

log

(
E

y←Q

[(
P (y)
Q(y)

)α])
α− 1

,

where P (·) and Q(·) represent the probability density/mass functions of P and Q respectively.
(More generally, P (y)/Q(y) is the Radon-Nikodym derivate of P with respect to Q evaluated at
y.) Note that we use log to denote the natural logarithm.

Composition and postprocessing are clean and simple for this definition (Lemma 2). Below, we
examine other properties of this definition.

2.1 Conversion to DP

Lemma 6 shows that tCDP implies a (ε, δ)-DP guarantee for every δ > 0. This provides one way
of interpreting the guarantee of tCDP.

Lemma 8. Let P and Q be probability distributions on Ω. Suppose Dα (P‖Q) ≤ ρα. Then, for
every event E and all δ > 0, we have P (E) ≤ eεQ(E) + δ for ε = ρα+ log(1/δ)/(α− 1).

Note that the optimal choice of α (assuming the choice is unconstrained) is α−1 =
√

log(1/δ)/ρ,
which yields ε = ρ+ 2

√
ρ log(1/δ). To attain Lemma 6, we set α = min{ω, 1 +

√
log(1/δ)/ρ}.

Proof. Let f(x) = log(P (x)/Q(x)) be the logarithm of the Radon-Nikodym derivative of P with
respect to Q and let Z = f(P ) be the random variable obtained by applying f to a draw from P .
Then

E
[
e(α−1)Z

]
= E

x∼P

[
e(α−1)f(x)

]
= E

x∼P

[(
P (x)

Q(x)

)α−1
]

= e(α−1)Dα(P‖Q) ≤ e(α−1)ρα.

For all ε,

P [Z > ε] = P
[
e(α−1)Z > e(α−1)ε

]
≤

E
[
e(α−1)Z

]
e(α−1)ε

≤ e(α−1)(ρα−ε).

For any event E,

P (E) = P
x∼P

[x ∈ E]

= P
x∼P

[x ∈ E ∧ f(x) ≤ ε] + P
x∼P

[x ∈ E ∧ f(x) > ε]

≤ P
x∼P

[x ∈ E ∧ f(x) ≤ ε] + P
x∼P

[f(x) > ε]

≤ eε P
x∼Q

[x ∈ E ∧ f(x) ≤ ε] + P
x∼P

[f(x) > ε]

≤ eε P
x∼Q

[x ∈ E] + P
x∼P

[f(x) > ε]

≤ eεQ(E) + e(α−1)(ρα−ε).

Setting ε = ρα+ log(1/δ)/(α− 1) ensures P (E) ≤ eεQ(E) + δ.

10



2.2 Group Privacy

The proof of group privacy for zCDP [BS16] immediately extends to show that (ρ, ω)-tCDP yields
(ρk2, ω/k)-tCDP for groups of size k. However, that proof does not yield any results for k > ω.
Here, we develop a different bound which applies to larger groups.

Proposition 9 (Group Privacy for Large Groups). Let M : X n → Y satisfy (ρ, ω)-tCDP. Let
x, x′ ∈ X n differ in k entries. Then

Dα

(
M(x)

∥∥M(x′)
)
≤

((
1 +

1

ω − 1

)k
− 1

)
(ω − 1)ωρ ≤ e

k
ω−1 · ω2 · ρ

for

α = 1 +
1(

1 + 1
ω−1

)k
− 1

≥ 1 + e
−k
ω−1 > 1.

The group privacy properties of tCDP for groups of size k > ω are substantially weaker than
those of CDP: First, the bound grows exponentially in the group size. Second, we only obtain
bounds on D1+o(1) (M(x)‖M(x′)), which approaches the KL divergence.

To help provide further intuition about this group privacy guarantee, we describe the tail bound
(i.e. (ε, δ)-differential privacy) guarantee that it entails. Roughly speaking, we obtain an (ε, δ)-
differential privacy guarantee for every δ > 0 where ε depends exponentially on the group size k,
and logarithmically on 1/δ.

Proposition 10 (Interpreting Group Privacy). Let M : X n → Y satisfy (ρ, ω)-tCDP. Let x, x′ ∈
X n differ in k entries. Then for every δ > 0 and every measurable S ⊆ Y we have Pr[M(x) ∈ S] ≤
eε Pr[M(x′) ∈ S] + δ where

ε = e
k

ω−1
(
ω2ρ+ log(1/δ)

)
.

Proof. From Proposition 9, we have Dα (M(x)‖M(x′)) ≤ e
k

ω−1 · ω2 · ρ for some α ≥ 1 + e
−k
ω−1 .

Applying Lemma 8, we see that it suffices to take

ε = e
k

ω−1 · ω2 · ρ+
log(1/δ)

α− 1
≤ e

k
ω−1

(
ω2ρ+ log(1/δ)

)
.

We now provide the proof of Proposition 9.

Lemma 11 (Triangle-like inequality for Rényi divergence). Let P,Q,R be probability distributions
on Ω and β, γ ∈ (1,∞). Set α = βγ/(β + γ − 1). Then

Dα (P‖Q) ≤ γ

γ − 1
Dβ (P‖R) + Dγ (R‖Q) .

Proof. Since α− 1 = (β − 1)(γ − 1)/(β+ γ− 1) > 0, we have α− 1 < β− 1 and α− 1 < γ− 1. Let
p = γ−1

γ−α and q = γ−1
α−1 = β+γ−1

β−1 . Then p, q ∈ (1,∞) and

1

p
+

1

q
=

(γ − α) + (α− 1)

γ − 1
= 1.

11



Set t = β−1
p . Thus, by Hölder’s inequality,

e(α−1)Dα(P‖Q) =

∫
Ω
P (x)αQ(x)1−αdx

=

∫
Ω
P (x)αR(x)−t ·R(x)tQ(x)1−αdx

≤
(∫

Ω

(
P (x)αR(x)−t

)p
dx

)1/p

·
(∫

Ω

(
R(x)tQ(x)1−α)q dx

)1/q

=

(∫
Ω
P (x)αpR(x)−tpdx

)1/p

·
(∫

Ω
R(x)tqQ(x)(1−α)qdx

)1/q

.

Now

αp =
(β + γ − 1) + (β − 1)(γ − 1)

β + γ − 1

(
1− 1

q

)−1

=
βγ

β + γ − 1

(
1− β − 1

β + γ − 1

)−1

=
βγ

β + γ − 1

(
(β + γ − 1)− (β − 1)

β + γ − 1

)−1

= β,

−tp = 1− β

tq =
β − 1

p

β + γ − 1

β − 1

= (β + γ − 1)

(
1− 1

q

)
= (β + γ − 1)

(
1− β − 1

β + γ − 1

)
= γ,

(1− α)q = (1− α)
γ − 1

α− 1

= 1− γ.

Hence

e(α−1)Dα(P‖Q) ≤
(∫

Ω
P (x)αpR(x)−tpdx

)1/p

·
(∫

Ω
R(x)tqQ(x)(1−α)qdx

)1/q

=

(∫
Ω
P (x)βR(x)1−βdx

)1/p

·
(∫

Ω
R(x)γQ(x)1−γdx

)1/q

=
(
e(β−1)Dβ(P‖R)

)1/p
·
(
e(γ−1)Dγ(R‖Q)

)1/q
.

12



Equivalently,

Dα (P‖Q) ≤ β − 1

p(α− 1)
Dβ (P‖R) +

γ − 1

q(α− 1)
Dγ (R‖Q)

=

(
1− 1

q

)
β − 1

(β − 1)(γ − 1)/(β + γ − 1)
Dβ (P‖R) + Dγ (R‖Q)

=

(
1− β − 1

β + γ − 1

)
β + γ − 1

γ − 1
Dβ (P‖R) + Dγ (R‖Q)

=
γ

γ − 1
Dβ (P‖R) + Dγ (R‖Q) ,

as required.

Lemma 12 (Group privacy for fixed α). Let P0, · · · , Pk be probability distributions, ε > 0, and
α ∈ (1,∞). Suppose Dα (Pi−1‖Pi) ≤ ε for all i ∈ [k]. Then

Dαk (P0‖Pk) ≤

((
α

α− 1

)k
− 1

)
(α− 1)ε,

where

αk = 1 +
1(

α
α−1

)k
− 1

.

Proposition 9 follows immediately from Lemma 12.

Proof of Lemma 12. We do this by induction. The case k = 1 is trivial (α1 = α and

((
α
α−1

)1
− 1

)
(α−

1)ε = ε). Now suppose

Dαk−1
(P0‖Pk−1) ≤

((
α

α− 1

)k−1

− 1

)
(α− 1)ε.

We have

(αk−1 − 1)(α− 1)

αk−1 + α− 1
=

1

( α
α−1)

k−1−1
(α− 1)

1

( α
α−1)

k−1−1
+ α

=
α− 1

1 + α

((
α
α−1

)k−1
− 1

)
=

1

1
α−1 + α

α−1

((
α
α−1

)k−1
− 1

)
=

1

1
α−1 +

(
α
α−1

)k
− α

α−1

=
1(

α
α−1

)k
− 1

= αk − 1.

13



Now we apply Lemma 11 with α← αk, β ← αk−1, and γ ← α:

Dαk (P0‖Pk) ≤
α

α− 1
Dαk−1

(P0‖Pk−1) + Dα (Pk−1‖Pk)

≤ α

α− 1

((
α

α− 1

)k−1

− 1

)
(α− 1)ε+ ε

=

((
α

α− 1

)k
− α

α− 1
+

1

α− 1

)
(α− 1)ε

=

((
α

α− 1

)k
− 1

)
(α− 1)ε,

as required.

2.3 Basic Algorithms

Most of the basic tools of differential privacy are compatible with CDP and, hence, with tCDP.
In particular, the Laplace [DMNS06] and Exponential [MT07] mechanisms satisfy (ε, 0)-DP, which
means they satisfy 1

2ε
2-zCDP [BS16, Prop. 1.4] and hence (1

2ε
2,∞)-tCDP. Adding Gaussian noise

sampled from N (0, σ2) to a sensitivity-∆ query guarantees
(

∆2

2σ2

)
-zCDP [BS16, Prop. 1.6] and(

∆2

2σ2 ,∞
)

-tCDP. Later we will show that tCDP supports additional algorithmic techniques.

3 Privacy Amplification by Subsampling

A more complex property of tCDP is privacy amplification by subsampling. This is a property
that CDP does not provide. Informally, this property states that, if a private algorithm is run on a
random subset of a larger dataset (and the identity of that subset remains hidden), then this new
algorithm provides better privacy protection (reflected through improved privacy parameters) to
the entire dataset as a whole than the original algorithm did.

Theorem 13 (Privacy Amplification by Subsampling). Let ρ, s ∈ (0, 0.1] and n,N ∈ N with
s = n/N and log(1/s) ≥ 3ρ(2 + log2(1/ρ)). Let M : X n → Y satisfy (ρ, ω′)-tCDP for ω′ ≥
1
2ρ · log(1/s) ≥ 3. Define the mechanism Ms : XN → Y by Ms(x) = M(xS), where xS ∈ X n is the

restriction of x ∈ XN to the entries specified by a uniformly random subset S ⊆ [N ] with |S| = n.
The algorithm Ms : XN → Y satisfies (13s2ρ, ω)-tCDP for

ω =
log(1/s)

4ρ
.

Before delving into the proof we compare this result to the analogous property of DP: Let
M : X n → Y and let Ms : XN → Y be defined as in Theorem 13 with s = n/N . If M satisfies
(ε, δ)-DP, then Ms satisfies (log(1 + s · (eε− 1)), s · δ)-DP. Note that log(1 + s · (eε− 1)) ≈ s · ε. (In

somewhat more detail, s · ε ≤ log(1 + s · (eε − 1)) ≤ s · ε+ ε2

8 by Hoeffding’s lemma.)

To conduct the proof, we first set up some notation. Let M : XN → Y satisfy ρ-zCDP. Fix
x, x′ ∈ XN differing in a single index i ∈ [n]. Let S ⊂ [N ] with |S| = n be uniformly random and
let xS , x

′
S ∈ X n denote the restrictions of x and x′, respectively, to the indices in S. We define the

14



following probability densities:

P = the density of M(xS) conditioned on i ∈ S,
Q = the density of M(x′S) conditioned on i ∈ S,
R = the density of M(xS) conditioned on i /∈ S,

= the density of M(x′S) conditioned on i /∈ S.

Since index i appears in the sample S with probability s, we may write the density of Ms(x) =
M(xS) as sP + (1− s)R. Similarly, the density of Ms(x

′) = M(x′S) is sQ+ (1− s)R.
Since M : X n → Y is (ρ, ω′)-zCDP (for some ω′), from the quasi-convexity of Rényi divergence,

it holds that Dα′ (P1‖P2) ≤ ρα′ for every pair P1, P2 ∈ {P,Q,R} and every α ∈ (1, ω′). Therefore,
in order to prove Theorem 13, it suffices to prove the following result about Rényi divergences. The
remainder of this section is devoted to proving Theorem 14.

Theorem 14. Let ρ ∈ (0, 0.1], s ∈ (0, 1], and ω′ > 2 satisfy

2 + log2

(
1

ρ

)
+ log2

(
1

(ω′ − 2)s

)
≤ ω′ ≤ 1

ρ
· log

(
1

(ω′ − 2)s

)
. (5)

Let P,Q,R be probability density functions over Y such that

Dα (P1‖P2) ≤ ρα

for every pair P1, P2 ∈ {P,Q,R} and all α ∈ (1, ω′). Then

Dα (sP + (1− s)R ‖ sQ+ (1− s)R) ≤ 13s2ρα

for every α ∈ (1, ω), where ω = ω′/2.

Under the mild constraint that

log(1/s) ≥ 3ρ(2 + log2(1/ρ)),

Condition 5 holds as long as

ω′ =
1

2ρ
· log(1/s) ≥ 3.

These values are used in the statement of Theorem 13.
We begin by proving some auxiliary lemmata.

Lemma 15. Let α > 1 and −1 ≤ x ≤ 1/(α− 1). Then (1 + x)α ≤ 1 + αx+ α(α− 1)x2.

Proof. We first prove the claim assuming x > 0. The case where x ∈ [−1, 0] will be handled
separately. Define f(x) = (1 + x)α. By Taylor’s theorem, for all x > 0,

f(x) = f(0) + f ′(0)x+ f ′′(0)
x2

2
+ f ′′′(ξx)

x3

6

= 1 + αx+ α(α− 1)
x2

2
+ α(α− 1)(α− 2)(1 + ξx)α−3x

3

6
,

for some 0 ≤ ξx ≤ x. For 0 ≤ x ≤ 1/(α− 1), we always have 0 ≤ ξx ≤ 1/(α− 1) and hence

α ≥ 3 =⇒ (1 + ξx)α−3 ≤ (1 + 1/(α− 1))α−3 ≤ e
α−3
α−1 ≤ e
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and
1 < α < 3 =⇒ (1 + ξx)α−3 ≤ 1.

We thus have (1 + ξx)α−3 ∈ [0, e] for all x ∈ [0, 1/(α − 1)]. Now we prove the result for x > 0 in
two cases: (i) If α ≥ 2, then

f(x) ≤ 1 + αx+ α(α− 1)
x2

2
+ α(α− 1)(α− 2) · e · x

3

6

≤ 1 + αx+ α(α− 1)
x2

2

(
1 +

e

3
· α− 2

α− 1

)
≤ 1 + αx+ α(α− 1)

x2

2

(
1 +

e

3

)
≤ 1 + αx+ α(α− 1)x2.

(ii) If 1 < α < 2, then

f(x) ≤ 1 + αx+ α(α− 1)
x2

2
+ 0.

We now address the case where x ∈ [−1, 0]. Consider the function

g(x) = 1 + αx+ α(α− 1)x2 − (1 + x)α.

The derivatives of g are given by

g′(x) = α+ 2α(α− 1)x− α(1 + x)α−1,

g′′(x) = 2α(α− 1)− α(α− 1)(1 + x)α−2,

g′′′(x) = −α(α− 1)(α− 2)(1 + x)α−3

Note that g′(0) = 0 and g′′(0) = α(α − 1) > 0. If 1 < α < 2, then g′′′(x) < 0 for all x > −1.
This means g′ is strictly concave on (−1,∞) and hence has no roots in (−1, 0). If α = 2, then
g′(x) = 2x has no roots in (−1, 0). If α > 2, then g′′′(x) > 0 for all x > −1. In this case, g′ is
strictly convex on (−1,∞) and, since g′(−1) = α−2α(α−1) < 0, there are no roots of g′ in (−1, 0).
In any case, g has no stationary point in (−1, 0). By Rolle’s theorem, together with the fact that
g(0) = g(−1) = 0, this means that g is either strictly positive or strictly negative on the interval
(−1, 0). To test which of these is the case, we make a convenient choice to evaluate g(−1/α), where
we see

g(−1/α) = 1− 1

α
−
(

1− 1

α

)α
> 0

for α > 1. Hence, we conclude that g is nonnegative on [−1, 0], which completes the proof.

Lemma 16. For x ≥ −1, α ∈ [1,∞), and β ≥ 0,

(1 + x)α ≤ 1 + αx+ α(α− 1)x2 + (αx0)α((α− 1)x0)β,

where x0 = max{x, 0}.

Proof. We split into two cases. First assume −1 ≤ x ≤ 1/(α− 1). Then by Lemma 15,

(1 + x)α ≤ 1 + αx+ α(α− 1)x2.
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This proves the result assuming x ≤ 1/(α− 1), as (αx0)α((α− 1)x0)β ≥ 0. Now assume x = x0 >
1/(α−1). Since this assumption implies ((α−1)x)β ≥ 1 and we also have 1 +αx+α(α−1)x2 > 0,
it suffices to show that (1 + x)α ≤ (αx)α. We have

0 ≤ 1 + x < (α− 1)x+ x = αx

and hence (1 + x)α < (αx)α as required.

Proof of Theorem 14. For notational convenience, let U = sQ+ (1− s)R. By quasi-convexity and
continuity of Rényi divergence, note that Dα (P‖U) ≤ ρα and Dα (Q‖U) ≤ ρα for all α ∈ [1, ω′].
Fix α ∈ (1, ω). We begin by writing

e(α−1)Dα(sP+(1−s)R ‖ sQ+(1−s)R) = e(α−1)Dα(sP+(1−s)R ‖ U)

= E
y←U

[(
sP (y) + (1− s)R(y)

U(y)

)α]
= E

y←U

[(
1 + s ·

(
P (y)−Q(y)

U(y)

))α]
= E [(1 + sZ)α]

where Z = (P (y)−Q(y))/U(y) for y ← U .
Observe that E [Z] = 0. We now estimate E

[
Z2
]
. To do this, we make use of the polarization

identity

(P −Q)2 = 2(P 2 +Q2)− 4

(
P

2
+
Q

2

)2

.

This lets us write

E
[
Z2
]

= 2 E
y←U

[
P (y)2

U(y)2

]
+ 2 E

y←U

[
Q(y)2

U(y)2

]
− 4 E

y←U

[
(P (y)/2 +Q(y)/2)2

U(y)2

]
= 2 exp (D2 (P‖U)) + 2 exp (D2 (Q‖U))− 4 exp

(
D2

(
1

2
P +

1

2
Q

∥∥∥∥U))
≤ 2e2ρ + 2e2ρ − 4 = 4(e2ρ − 1).

Here, the inequality holds because D2 (P‖U) ,D2 (Q‖U) ≤ 2ρ and Rényi divergence is nonnegative.
Define Z0 = max{Z, 0} and Ẑ = P (y)/U(y) for y ← U . Note that Z0 ≤ Ẑ. Since 1 + sZ is

obtained as a ratio of probabilities, sZ ≥ −1. Therefore, we may apply Lemma 16 to estimate

E [(1 + sZ)α] ≤ E
[
1 + αsZ + α(α− 1)s2Z2 + (αsZ0)α((α− 1)sZ0)β

]
= 1 + αs · E [Z] + α(α− 1)s2 · E

[
Z2
]

+ (αs)α((α− 1)s)β · E
[
Zα+β

0

]
≤ 1 + 4s2α(α− 1) · (e2ρ − 1) + (αs)α((α− 1)s)βE

[
Ẑα+β

]
≤ 1 + 4s2α(α− 1) · (e2ρ − 1) + (αs)α((α− 1)s)β · exp((α+ β)(α+ β − 1)ρ).

The penultimate inequality holds because of our estimates of E [Z] and E
[
Z2
]
, and the fact that

0 ≤ Z0 ≤ Ẑ. The final inequality follows because Dα+β (P‖U) ≤ ρ(α+ β) as long as α+ β ≤ ω′.
We now estimate the term on the right, taking β = ω′ − α ≥ 0. Here, we have

(αs)α · ((α− 1)s)ω
′−α · exp(ω′(ω′ − 1)ρ) = α(α− 1)s2 · (αs)α−1 · ((α− 1)s)ω

′−α−1 · exp(ω′(ω′ − 1)ρ)

= α(α− 1)s2 ·
(

α

α− 1

)α−1

· ((α− 1)s)ω
′−2 · exp(ω′(ω′ − 1)ρ)

≤ eα(α− 1)s2 · ((α− 1)s)ω
′−2 · exp(ω′(ω′ − 1)ρ)
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Our goal is now to show that for 1 < α ≤ ω′/2, we have

((α− 1)s)ω
′−2 · exp(ω′(ω′ − 1)ρ) ≤ ρ.

Note that the left hand side is increasing as a function of α. So it suffices to show that

((ω′/2− 1)s)ω
′−2 · exp(ω′(ω′ − 1)ρ) ≤ ρ.

Using the fact that ω′ρ ≤ log(1/(ω′ − 2)s), which follows from the inequality on the right of
Condition 5, we have that

exp(ω′(ω′ − 1)ρ) ≤ (1/(ω′ − 2)s)ω
′−1.

Hence the left hand side is at most
2−(ω′−2)

(ω′ − 2)s
≤ ρ

by the inequality on the left of Condition 5.
We may now complete the calculation with

E [(1 + sZ)α] ≤ 1 + 4α(α− 1)s2(e2ρ − 1) + eα(α− 1)s2 · ρ

≤ 1 + 13α(α− 1)s2ρ ≤ eα(α−1)·13s2ρ,

as required.

3.1 Optimality of our Subsampling Bound

We next show that our subsampling bound (Theorem 13) is optimal up to constants. To do this
we use the following result which gives an exact bound for privacy amplification by subsampling
(but only for the special case where α is an integer, and the distributions Q and R are identical).

Lemma 17 (Exact Subsampling). Let P and Q be probability distributions and s ∈ [0, 1]. Suppose
α ∈ (1,∞) is an integer. Then

Dα (sP + (1− s)Q‖Q) =
1

α− 1
log

(
(1− s)α + α(1− s)α−1s+

α∑
k=2

(
α

k

)
(1− s)α−kske(k−1)Dk(P‖Q)

)
.

Proof. Let Z = log(P (y)/Q(y)) for y ← Q. Then, by the binomial theorem and the definition of
Rényi divergence,

e(α−1)Dα(sP+(1−s)Q‖Q) = E
y←Q

[(
sP (y) + (1− s)Q(y)

Q(y)

)α]
=E

[(
1− s+ seZ

)α]
=E

[
α∑
k=0

(
α

k

)
(1− s)α−k

(
seZ
)k]

=(1− s)α + α(1− s)α−1s+

α∑
k=2

(
α

k

)
(1− s)α−kske(k−1)Dk(P‖Q).
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Fix ρ, s ∈ (0, 0.1]. To show the optimality of Theorem 14, consider P = N (1, 1/2ρ) and
Q = R = N (0, 1/2ρ). This corresponds to the Gaussian Mechanism, which satisfies (ρ,∞)-tCDP.
In fact, Dα (P‖Q) = ρα for all α ∈ (1,∞).

Theorem 14 implies Dα (sP + (1− s)Q‖Q) ≤ 13s2ρα for all α ∈ (1, ω), where ω = min{log(1/s)/3ρ+
1/2, 1 + 1/s1/3}.

By Lemma 17 with α = 2,

Dα (sP + (1− s)Q‖Q) = log
(

(1− s)2 + 2(1− s)s+ s2eD2(P‖Q)
)

= log
(
1 + s2(e2ρ − 1)

)
≥ s2ρα.

This shows that, while we may be able to reduce the constant 13 in our bound to 1, we cannot
reduce it further.

Next we show the optimality of ω. Theorem 14 asserts that Dα (sP + (1− s)Q‖Q) ≤ 10s2ρα
for all α ∈ (1, ω). We will consider the largest value of ω for which this holds. Let α = dω− 1e ≥ 2.
By Lemma 17,

Dα (sP + (1− s)Q‖Q) =
1

α− 1
log

(
(1− s)α + α(1− s)α−1s+

α∑
k=2

(
α

k

)
(1− s)α−kske(k−1)Dk(P‖Q)

)

≥ 1

α− 1
log
(
sαe(α−1)Dα(P‖Q)

)
= ρα− α

α− 1
log(1/s).

Now we have
10s2ρα ≥ Dα (sP + (1− s)Q‖Q) ≥ ρα− α

α− 1
log(1/s),

which entails

ω − 1 ≤ α ≤ 1

1− 10s2
· log(1/s)

ρ
.

For sufficiently small s, this shows that ω = O(log(1/s)/ρ) is necessary. This matches our bound
up to constant factors.

4 Sinh-Normal Noise

One of the most basic techniques in differential privacy is the use of noise addition to answer a
single low-sensitivity query. We recall the definition of (global) sensitivity.

Definition 18. Let q : X n → R. The global sensitivity of q is the minimum ∆ > 0 such that
|q(x)− q(x′)| ≤ ∆ for all x, x′ ∈ X n differing on a single entry.

A low-sensitivity query q may be answered with differential privacy by adding noise with stan-
dard deviation proportional to ∆. Each variant of differential privacy (pure, approximate, con-
centrated, truncated concentrated) provides constraints on the distributions from which this noise
may be drawn. For example, pure differential privacy requires a noise distribution whose tails
decay at most inverse exponentially. The canonical distribution with this property is the Laplace
distribution.

We can similarly identify “canonical” distributions for approximate and concentrated differential
privacy. For (ε, δ)-differential privacy, we believe this to be the Laplace distribution with standard
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Figure 2: Left: The probability density function fZ of Z ← N (0, 2) and its logarithm. Right: The
probability density function fX of the sinh-normal distribution X = arsinh(Z) and its logarithm.

deviation ∆/ε, but with its support truncated to the interval [±O(∆ log(1/δ)/ε)]. For CDP, the
canonical noise distribution is the Gaussian.

For tCDP, we propose adding noise sampled from the following distribution, for parameters
σ,A > 0.

X ← A · arsinh
( σ
A
· N (0, 1)

)
.

Here arsinh(x) = log
(
x+
√
x2 + 1

)
is the inverse of the hyperbolic sine function sinh(y) =

1
2 (ey − e−y). Intuitively, X is simply the Gaussian N (0, σ2) with exponentially faster tail decay.
To see this, note that around the origin arsinh(x) ≈ x, so the distribution looks like a Gaussian
here. However, when x is large, arsinh(x) ≈ log x. (Since arsinh is a symmetric function, the lower
tails are identical.) Thus the tails decay doubly exponentially, rather than just in a subgaussian
manner. The value of A determines where the transition from linear to logarithmic occurs; as
A→∞, we have X → N (0, σ2). The quantity A also controls the truncation point in the resulting
tCDP guarantee.

Theorem 19. Let q : X n → R have sensitivity-∆. Let ρ,A satisfy 1 < 1/
√
ρ ≤ A/∆. Define a

randomized algorithm M : X n → R by

M(x)← q(x) +A arsinh

(
1

A
N (0,∆2/2ρ)

)
.

Then M satisfies (16ρ,A/8∆)-tCDP.

We remark that the bound of Theorem 19 is optimal up to constant factors. (Namely, strength-
ening Theorem 19 would correspondingly strengthen our result for point queries in Corollary 20,
which would violate the lower bound given in Corollary 38.)

4.1 Example Application: Histograms

To demonstrate the advantage of the sinh-normal noise over Gaussian noise, we consider the example
of privately releasing histograms. That is, for each u ∈ X there is a point query qu : X n → R given

20



by qu(x) = |{i ∈ [n] : xi = u}|. That is, qu(x) counts the number of times u appears in x.
Under (ε, 0)-differential privacy, we can, with high probability, answer all queries with error

Θ
(

log |X |
ε

)
. Under (ε, δ)-differential privacy this can potentially be improved to Θ

(
log(1/δ)

ε

)
. For

ρ-zCDP the error scales as Θ

(√
log |X |
ρ

)
. In all cases, these error bounds are attained by adding

independent noise from the Laplace, truncated Laplace, and Gaussian distributions respectively.
We now show that adding noise from the sinh-normal distribution attains error O(ω log log |X |):

Corollary 20. For every ρ ∈ (0, 1) and ω ≥ 1/8
√
ρ, there exists a (ρ, ω)-tCDP randomized algo-

rithm M : X n → RX such that for every β > 0 and x ∈ X n,

P
M

[
max
u∈X
|M(x)u − qu(x)| ≥ 8ω · arsinh

(√
log(|X |/β)

2ω2ρ

)]
≤ β.

If log(|X |/β)
2ω2ρ

≈ 0, then 8ω ·arsinh
(√

log(|X |/β)
2ω2ρ

)
≈ 4
√

2 log(|X |/β)
ρ , as for x ≈ 0 we have arsinh(x) ≈

x. This matches the bound attainable under ρ-zCDP up to constant factors.

If log(|X |/β)
2ω2ρ

� 0, then 8ω · arsinh
(√

log(|X |/β)
2ω2ρ

)
≈ 4ω ·

(
log log(|X |/β) + log(2/ω2ρ)

)
, as for

x� 0 we have arsinh(x) ≈ log(2x). This log log |X | dependence is exponentially better than what
is attainable under CDP. Later (Corollary 38), we show that this bound is tight up to constant
factors.

Proof. We can answer these queries by adding independent sinh-normal noise to each query. Clearly,
each qu has sensitivity ∆ = 1. Furthermore, if x, x′ ∈ X n differ in a single coordinate, then for all
but two of the qu queries we have qu(x) = qu(x′). Hence, the `1 sensitivity of the entire vector of
queries is 2, so as we will see, it suffices to add independent sinh-normal noise at scale ∆ = 2 to
every individual query.

More precisely, we define an algorithm M as follows. Independently for each u ∈ X , we sample

M(x)u ← qu(x) + 8ω · arsinh

(
1

8ω
· N (0, 16/ρ)

)
.

By Theorem 19, every individual answer M(x)u satisfies (ρ/2, ω)-tCDP. Fix x, x′ ∈ X differing in a
single entry. For all but two points u ∈ X , we have qu(x) = qu(x′), so the privacy loss corresponding
to every such coordinate is zero. Applying composition over the two remaining coordinates yields
the desired privacy guarantee.

The accuracy guarantee follows from a union bound and the fact that

∀σ, x > 0 P
X←N (0,σ2)

[|X| ≥ x] ≤ e−x2/2σ2
.

4.2 Sinh-Normal Analysis

Our analysis of the tCDP guarantees of sinh-normal distribution requires a few technical results
about hyperbolic trigonometric functions.

Lemma 21. For all x, y ∈ R,

log

(
cosh(x+ y)

cosh(x)

)
= log(cosh(y)) + log(1 + tanh(x) tanh(y)).

21



Proof. Applying hyperbolic trigonometric identities,

log

(
cosh(x+ y)

cosh(x)

)
= log

(
cosh(x) cosh(y) + sinh(x) sinh(y)

cosh(x)

)
= log

(
cosh(y) + tanh(x) sinh(y)

)
= log(cosh(y)) + log(1 + tanh(x) tanh(y)).

Lemma 22. For all x, y ∈ R,

sinh2(x+ y) = sinh(x) cosh(x) sinh(2y) + sinh2(x) cosh(2y) +
1

2
(cosh(2y)− 1).

Proof. We apply a sequence of well-known hyperbolic trigonometric identities:

sinh2(x+ y) =
1

2

(
cosh(2x+ 2y)− 1

)
=

1

2

(
cosh(2x) cosh(2y) + sinh(2x) sinh(2y)− 1

)
=

1

2

(
sinh(2x) sinh(2y)

)
+

1

2

(
cosh(2x) cosh(2y)− 1

)
= sinh(x) cosh(x) sinh(2y) +

1

2

(
(2 sinh2(x) + 1) cosh(2y)− 1

)
= sinh(x) cosh(x) sinh(2y) + sinh2(x) cosh(2y) +

1

2
(cosh(2y)− 1).

Lemma 23. Let γ ∈ (0, 1/2). Then

1√
π

∫ ∞
−∞

cosh(γx
√

1 + x2) · e−x2
dx ≤ e2γ2

.

Proof. Let f(γ) denote the expression on the left-hand side. We compute the first few terms of the
Taylor series of f centered at γ = 0. Repeatedly differentiating under the integral shows that

f ′(γ) =
1√
π

∫ ∞
−∞

sinh(γx
√

1 + x2) · (x2 + x4)1/2 · e−x2
dx,

f ′′(γ) =
1√
π

∫ ∞
−∞

cosh(γx
√

1 + x2) · (x2 + x4) · e−x2
dx,

f ′′′(γ) =
1√
π

∫ ∞
−∞

sinh(γx
√

1 + x2) · (x2 + x4)3/2 · e−x2
dx,

f (4)(γ) =
1√
π

∫ ∞
−∞

cosh(γx
√

1 + x2) · (x2 + x4)2 · e−x2
dx.

Evaluating these derivatives, we have f ′(0) = f ′′′(0) = 0 and

f ′′(0) =
1√
π

∫ ∞
−∞

x2 · e−x2
dx+

1√
π

∫ ∞
−∞

x4 · e−x2
dx =

1

2
+

3

4
=

5

4
.
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Moreover,

max
ξ∈(0,1/2)

|f (4)(ξ)| ≤ 1√
π

∫ ∞
−∞

cosh(0.5x
√

1 + x2) · (x2 + x4)2 · e−x2
dx ≤ 150

so by Taylor’s Theorem,

f(γ) ≤ 1 +
5

8
γ2 +

150 · γ4

4!
≤ 1 + 2γ2 + 2γ4 ≤ e2γ2

for all γ ∈ (0, 1/2).

We also recall the change-of-variables identity for random variables.

Lemma 24. Let Z be a real-valued random variable with continuous probability density function
fZ(z). Let X = g−1(Z) for some function g : R→ R which is strictly increasing and continuously
differentiable. Then X has probability density function

fX(x) = fZ(g(x))g′(x).

Finally we can prove Theorem 19 in the following form. For simplicity, we restrict our attention
to the case where ∆ = 1 and where q(x) = q(x′) + 1. The “reverse” inequality and extension to
arbitrary ∆ are straightforward.

Proposition 25. Let ρ ∈ (0, 1) and choose parameters ω, β ≥ 1 such that 1/
√
ρ ≤ 8ω ≤ β. Let P be

the distribution β arsinh
(

1
β · N (0, 1/2ρ)

)
and let Q be the distribution β arsinh

(
1
β · N (0, 1/2ρ)

)
−1.

Then for every 1 ≤ α ≤ ω,
Dα (P‖Q) ≤ 16ρα.

Proof. By Lemma 24, the density functions take the form

P (x) = Q(x− 1) =
cosh(x/β)

√
ρ

√
π

exp

(
−ρβ2 sinh2

(
x

β

))
.

We calculate

e(α−1)Dα(P‖Q) =

∫ ∞
∞

P (x)αQ(x)1−α dx

=

√
ρ
√
π

∫ ∞
−∞

coshα
(
x

β

)
· cosh1−α

(
x+ 1

β

)
· exp

(
−ρβ2

(
α sinh2

(
x

β

)
+ (1− α) sinh2

(
x+ 1

β

)))
dx

=
β
√
ρ

√
π

∫ ∞
−∞

coshx ·
(

coshx

cosh(x+ 1/β)

)α−1

· exp
(
−ρβ2

(
α sinh2 x+ (1− α) sinh2(x+ 1/β)

))
dx.

We now apply Lemmas 21 and 22 to rewrite this as

β
√
ρ

√
π

∫ ∞
−∞

coshx · exp
(

(1− α)
(

log(cosh(1/β)) + log(1 + tanhx tanh(1/β))
))

· exp

(
−ρβ2

(
α sinh2 x+ (1− α)

(
sinhx coshx sinh(2/β) + sinh2 x cosh(2/β) +

1

2
(cosh(2/β)− 1)

)))
dx

= exp

(
(α− 1)

(ρβ2

2
(cosh(2/β)− 1)− log(cosh(1/β))

))
·
β
√
ρ

√
π

·
∫ ∞
−∞

coshx · exp((1− α) log(1 + tanhx tanh(1/β)))

· exp
(
−ρβ2

(
α sinh2 x+ (1− α)

(
sinhx coshx sinh(2/β) + sinh2 x cosh(2/β)

)))
dx.
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Now we make the substitution sinhx 7→ x to rewrite the integral as

β
√
ρ

√
π

∫ ∞
−∞

exp

(
(1− α) log

(
1 +

x tanh(1/β)√
1 + x2

))
· exp

(
−ρβ2

(
αx2 + (1− α)

(
x
√

1 + x2 sinh(2/β) + x2 cosh(2/β)
)))

dx

=
β
√
ρ

√
π

∫ ∞
−∞

exp
(

(α− 1)ρβ2 sinh(2/β)x
√

1 + x2
)
· exp

(
−(α− 1) log

(
1 +

x tanh(1/β)√
1 + x2

))
· exp

(
−ρβ2(1− (cosh(2/β)− 1)(α− 1))x2

)
dx. (6)

We tackle this integral by estimating the integrals of two factors of the integrand separately,
and combining the answers via Cauchy-Schwarz4. For the first part, we compute

β
√
ρ

√
π

∫ ∞
−∞

exp
(

2(α− 1)
(
ρβ2 sinh(2/β)x

√
1 + x2

))
· exp

(
−ρβ2(1− (cosh(2/β)− 1)(α− 1))x2

)
dx

=
β
√
ρ

√
π

∫ ∞
−∞

cosh
(

2(α− 1)
(
ρβ2 sinh(2/β)x

√
1 + x2

))
· exp

(
−ρβ2(1− (cosh(2/β)− 1)(α− 1))x2

)
dx

(by symmetry)

=
1√

π · (1− (cosh(2/β)− 1)(α− 1))

∫ ∞
−∞

cosh

(
2(α− 1) sinh(2/β)

1− (cosh(2/β)− 1)(α− 1)
·

x
√
x2 + ρβ2(1− (cosh(2/β)− 1)(α− 1))

)
· e−x2

dx

≤ 1√
π · (1− (cosh(2/β)− 1)(α− 1))

∫ ∞
−∞

cosh

(
2(α− 1) sinh(2/β)β

√
ρ√

1− (cosh(2/β)− 1)(α− 1)
· x
√
x2 + 1

)
· e−x2

dx

≤ 1√
1− (cosh(2/β)− 1)(α− 1)

· exp

(
4ρ(α− 1)2 · β2 sinh2(2/β)

1− (cosh(2/β)− 1)(α− 1)

)
,

where the last inequality follows by Lemma 23 using the fact that

(α− 1) sinh(2/β)β
√
ρ ≤ 1

8
≤ 1

4

√
1− (cosh(2/β)− 1)(α− 1).

We now estimate the other half of the integral (6):

β
√
ρ

√
π

∫ ∞
−∞

exp

(
2(α− 1) log

(
1 +

x tanh(1/β)√
1 + x2

))
· exp

(
−ρβ2(1− (cosh(2/β)− 1)(α− 1))x2

)
dx

≤
β
√
ρ

√
π

∫ ∞
−∞

exp

(
2(α− 1)x tanh(1/β)√

1 + x2

)
· exp

(
−ρβ2(1− (cosh(2/β)− 1)(α− 1))x2

)
dx

(since log(1 + x) ≤ x)

≤
β
√
ρ

√
π

∫ ∞
−∞

exp
(

2(α− 1) sinh(1/β)x
√

1 + x2
)
· exp

(
−ρβ2(1− (cosh(2/β)− 1)(α− 1))x2

)
dx

≤ 1√
1− (cosh(2/β)− 1)(α− 1)

· exp

(
4ρ(α− 1)2 · β2 sinh2(2/β)

1− (cosh(2/β)− 1)(α− 1)

)
4That is, the fact that for µ(x) ≥ 0, we have

∫
f(x)g(x)µ(x) ≤

(∫
f2(x)µ(x)

)1/2 (∫
g2(x)µ(x)

)1/2
.
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by the same calculation as above. Hence, by the Cauchy-Schwarz inequality, the integral (6) is
itself at most

1√
1− (cosh(2/β)− 1)(α− 1)

· exp

(
4ρ(α− 1)2 · β2 sinh2(2/β)

1− (cosh(2/β)− 1)(α− 1)

)
.

This gives us the expression

e(α−1)Dα(P‖Q) ≤
exp

(
(α− 1)

(
ρβ2

2 (cosh(2/β)− 1)− log(cosh(1/β))
))

√
1− (cosh(2/β)− 1)(α− 1)

· exp

(
4ρ(α− 1)2 · β2 sinh2(2/β)

1− (cosh(2/β)− 1)(α− 1)

)
To get a handle on this expression, we estimate

cosh(2/β)− 1 ≤ 4

β2

for β ≥ 1. This in turn implies that

1− (cosh(2/β)− 1)(α− 1) ≥ 1− 4(α− 1)

β2
≥ exp

(
−8(α− 1)

β2

)
as long as (α− 1)/β2 ≤ 1/8.

Using the fact that β2 sinh2(2/β) ≤ 2 and log(cosh(1/β)) > 0, we can put everything together
to get an upper bound of

exp

(
2ρ(α− 1) +

4(α− 1)

β2
+ 16ρ(α− 1)2

)
≤ e16ρα(α−1)

as long as β ≥ 1/
√
ρ.

5 Gaussian Smooth Sensitivity

We show that tCDP supports the addition of Gaussian noise with data-dependent variance. This
provides a natural analog of the smooth sensitivity framework of Nissim, Raskhodnikova, and Smith
[NRS07] which is compatible with tCDP.

Proposition 26 (Gaussian Smooth Sensitivity). Let f, g : X n → R satisfy the following conditions.
For all neighboring x, x′ ∈ X n, we have

|f(x)− f(x′)| ≤ ∆f · eg(x)/2 and |g(x)− g(x′)| ≤ ∆g.

(That is, ∆f · eg/2 is a “smooth” upper bound on the “local sensitivity” of f .)
Define a randomized algorithm M : X n → R by

M(x)← N
(
f(x), eg(x)

)
.

Then M satisfies
(

∆2
f + ∆2

g,
1

2∆g

)
-tCDP.
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This is another powerful algorithmic technique available in the tCDP toolbox. We remark
that smooth sensitivity can be used to answer point queries with error comparable to that of
Corollary 20. In particular, for any ∆ > 0 we can define a (∆2, 1/2∆)-tCDP algorithm M as
follows. Independently, for each point query qu, the algorithm samples Yu ← N

(
0, e∆qu(x)

)
and

sets M(x)u = max
{

0, 2
∆ log |Yu|

}
. This is equivalent to adding noise to qu(x) from the distribution

2
∆ log |N (0, 1)| and then postprocessing negative answers to be zero. This noise distribution’s upper
tail decays doubly exponentially – much like the sinh-normal distribution – but the lower tail decays
only exponentially.

To prove Proposition 26, we make use of the following lemma bounding the Rényi divergence
between Gaussians.

Lemma 27 ([vEH14, equation 10] & [GAL13, table 2]). Let µ0, µ1, σ0, σ1 ∈ R. If ασ2
1 − (α− 1)σ2

0 >
0, then

2Dα

(
N (µ0, σ

2
0)
∥∥N (µ1, σ

2
1)
)

=
α(µ0 − µ1)2

ασ2
1 − (α− 1)σ2

0

+ log

(
σ2

1

σ2
0

)
+

1

α− 1
log

(
σ2

1

ασ2
1 − (α− 1)σ2

0

)
=

α(µ0 − µ1)2

ασ2
1 − (α− 1)σ2

0

+
1

α− 1
log

(
(σ2

1)α(σ2
0)1−α

ασ2
1 − (α− 1)σ2

0

)
.

Now Proposition 26 is implied by the following lemma (with γ = 1/2).

Lemma 28. Let µ0, µ1, σ, t, γ ∈ R. If α(et − 1) + 1 ≥ γ > 0 and γ ≤ 1, then

Dα

(
N (µ0, σ

2)
∥∥N (µ1, e

tσ2)
)
≤ α ·

(
(µ0 − µ1)2

2γ · σ2
+

t2

4γ2

)
.

Proof. By Lemma 27, if α(et − 1) + 1 > 0, then

2Dα

(
N (µ0, σ

2)
∥∥N (µ1, e

tσ2)
)

=
α(µ0 − µ1)2

σ2(α(et − 1) + 1)
+

1

α− 1
log

(
eαt

α(et − 1) + 1

)
.

Since α(et − 1) + 1 ≥ γ it is immediate that

α(µ0 − µ1)2

σ2(α(et − 1) + 1)
≤ α · (µ0 − µ1)2

γ · σ2
.

It only remains to show that 1
α−1 log

(
eαt

α(et−1)+1

)
≤ α · t2/2γ2.

Let f(t) = log(1 + α(et − 1)). Then

f(0) = 0,

f ′(t) =
αet

1 + α(et − 1)
,

f ′(0) = α,

f ′′(t) = α
et(1 + α(et − 1))− etαet

(1 + α(et − 1))2

=
α(1− α)et

(1 + α(et − 1))2

= α(1− α)
1 + x/α

(1 + x)2
,
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where x = α(et − 1). For α ≥ 1 and x ≥ −1 + γ,

0 <
1 + x/α

(1 + x)2
≤ max{1, 1 + x}

(1 + x)2
= max

{
1

(1 + x)2
,

1

1 + x

}
≤ 1

min{γ, γ2}
=

1

γ2
.

Hence 0 ≥ f ′′(t) ≥ −α(α− 1)/γ2 for α(et − 1) + 1 ≥ γ and α > 1. By Taylor’s theorem,

αt ≥ f(t) ≥ αt− α(α− 1)
t2

2γ2
.

and
1

α− 1
log

(
eαt

α(et − 1) + 1

)
=
αt− f(t)

α− 1
≤ αt− αt+ α(α− 1)t2/2γ2

α− 1
= α

t2

2γ2
.

6 Sophisticated Algorithms

We have covered the key algorithmic primitives of tCDP – all those compatible with CDP plus sinh-
Normal noise addition and Gaussian smooth sensitivity. Now we demonstrate how these primitives
can be used to build more sophisticated algorithms.

We define the Gap-Max problem, which is a useful primitive for differentially private data
analysis:

Problem 29 (Gap-Max). Our problem is specified by a loss function ` : X n × [k] → R and a gap
α ≥ 0. We assume ` has sensitivity 1 in its first argument – that is, for all neighbouring x, x′ ∈ X n,
we have

∀j ∈ [k] |`(x, j)− `(x′, j)| ≤ 1.

We seek a differentially private algorithm M : X n → [k] with the following accuracy guarantee.
Fix an input x ∈ X n. Let

j∗ = argmaxj∈[k] `(x, j).

Suppose
∀j ∈ [k] j 6= j∗ =⇒ `(x, j) < `(x, j∗)− αn.

Under this “gap assumption,” we want M(x) = j∗ with high probability.

Gap-Max is a useful primitive that has been studied extensively in the literature (both explicitly
and implicitly). As we show below, it is also an informative test-case for studying different variants
of differential privacy. The first algorithm for solving this problem is the exponential mechanism
[MT07], defined by

P [M(x) = j] ∝ exp
(ε

2
· `(x, j)

)
.

This algorithm is (ε, 0)-DP (and (1
2ε

2,∞)-tCDP) and solves the gap-max problem as long as αn ≥
O(log(k)/ε). (This bound is optimal, up to constants, for pure DP. More generally, the exponential
mechanism is optimal for the “approx-max” problem where there is no gap assumption.)

However, we can do better than the exponential mechanism if we relax to approximate DP.
The propose-test-release framework [DL09] can be used to solve the gap-max problem subject to
(ε, δ)-DP as long as αn ≥ O(log(1/δ)/ε). (Note that this bound is independent of k.) What can
be done with tCDP?
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We give two generic reductions from privacy-preserving mechanisms that answer low-sensitivity
queries by adding (appropriately sampled) noise to the gap-max problem. The two reductions ob-
tain similar parameters (up to constant factors). Both reductions give rise to resulting mechanisms
that attain whatever differential privacy guarantee the original noise-adding mechanism attained.
The required gap depends on the tail behaviour of the noise distribution. A somewhat-informal
statement follows:

Theorem 30 (Additive Noise to Gap-Max Reduction). Let D be a distribution on R such that the
following hold.

• Adding noise sampled from D to a sensitivity-1 query satisfies (a certain variant of) differ-
ential privacy.

• P
X←D

[|X| ≥ αn/2]� 1/k.

Then there exists a differentially private algorithm solving the gap-max problem with gap α and
k options. The attained differential privacy guarantee is the same as that afforded by the noise-
addition mechanism (up to postprocessing and two-fold composition).

Applying our reduction to the Laplace distribution attains a (ε, 0)-DP algorithm for gap-max
as long as αn ≥ O(log(k)/ε). Applying our reduction to the Laplace distribution with support
restricted to a symmetric interval around the origin of length O(log(1/δ)/ε) attains a (ε, δ)-DP
algorithm for gap-max as long as αn ≥ O(log(min{k, 1/δ}/ε). Applying our reduction to the
Gaussian distribution attains a ρ-zCDP algorithm for gap-max as long as αn ≥ O(

√
log(k)/ρ).

Finally, applying our reduction to the sinh-Normal distribution attains a (ρ, ω)-tCDP algorithm
for gap-max as long as αn ≥ O

(
(ω + 1/

√
ρ) · log log k

)
. See Section 1.2 for a discussion comparing

the parameters obtained under the various variants of differential privacy.

6.1 First Reduction

Our first reduction replaces the loss function ` : X n × [k]→ R with a surrogate function f that is
“sparse” over [k] (much like a histogram). Specifically, we construct a function f : X n × [k] → R
such that for every x ∈ X n, the functions f and ` have the same argmax (over [k]) and the same gap.
Moreover, f(x, j) has small sensitivity (in x, for fixed j), and f is sparse: for each database x ∈ X n,
the value of f(x, ·) is 0 on all but a single coordinate j∗ ∈ [k]. The combination of these properties
allows us find the argmax of f (while satisfying the appropriate variant of differential privacy) by
simply adding noise to each of the k values and returning the noisy argmax. The privacy argument
is similar to the approach used for releasing histograms (or, equivalently, answering point queries).
The argmax of f equals the argmax of `, and thus whenever this procedure succeeds (w.r.t f) it
correctly identifies `’s argmax.

Algorithm 31. Generalized Histogram Algorithm

• Parameters: n, k ∈ N and a continuous distribution D on R.

• Public input: ` : X n×[k]→ R such that `(·, j) has sensitivity 1 for all j ∈ [k].

• Private input: x ∈ X n

• Define a permutation σx : [k] → [k] such that `(x, σx(j)) ≥ `(x, σx(j + 1)) for all

j ∈ [k − 1]. I.e. the permutation σx orders the elements of [k] in descending

order according to their loss.
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• (Goal: Output σx(1) = argmaxj∈[k] `(x, j) ∈ [k], subject to differential privacy.)

• Define f(x, j) = max{`(x, j)− `(x, σx(2)), 0}.

• Independently for each j ∈ [k] sample Zj ← D.

• Output ĵ = argmaxj∈[k] f(x, j) + Zj.

The key observation is that, for any x, f(x, j) = 0 for all j 6= σx(1). In other words, f is very
sparse. Furthermore, for fixed j ∈ [k], f has sensitivity 2. Thus, for neighbouring inputs x, x′, if
we look at the sensitivity vector v = (f(x, 1)− f(x′, 1), f(x, 2)− f(x′, 2), · · · , f(x, k)− f(x′, k)), we
have that all but (at most) two entries in v equal 0 (‖v‖0 ≤ 2) and ‖v‖∞ ≤ 2. This means that
the privacy cost of our mechanism is the same as answering up to 2 queries of sensitivity at most
2 with the noise distribution D.

On the utility front, the gap assumption implies that f(x, σx(1)) ≥ αn and f(x, j) = 0 for all
j 6= σx(1). We just need to union bound over all the noise to ensure that the noisy max is the true
max with high probability. That is, if |Zj | ≤ αn/2 for all j ∈ [k], then ĵ = σx(1).

This algorithm readily generalizes to the gap version of the “top-m problem” (more commonly
called top-k) which has been studied extensively [BLST10, CHS14, BU17, SU17]: We simply set
f(x, j) = max{`(x, j) − `(x, σx(m + 1)), 0} instead. Now the sparsity is m (rather than 1). So we
pay a

√
m factor from composition and are able to identify up to m indices as long as their values

are sufficiently larger than the (m+ 1)th value.

6.2 Second Reduction

Our second reduction is a bit sharper: we reduce gap-max to a single instance of the noise-addition
mechanism (rather than two instances as in Section 6.1). The reduction is a bit more complex (and
assumes that the noise added is symmetric). This reduction operates by adding noise to the actual
gap in the given database. If the noisy gap is larger than a threshold, then the (true) argmax is
returned. Otherwise, the reduction returns one of the other (incorrect) elements chosen uniformly
and at random. We note that this closely mimics the propose-test-release framework [DL09].

The threshold is chosen carefully so that both privacy and accuracy are satisfied. For accuracy,
we want the threshold to be large enough. For privacy, since the gap is a low-sensitivity quantity,
the noisy gap itself is differentially private (and by post-processing, privacy is maintained when
we compare the noisy gap to a fixed threshold). The twist comes in that when the noisy gap is
large enough, we release the true argmax (which depends directly on the data, and is thus not a
differentially private quantity). To guarantee privacy, we carefully choose the threshold so for any
two neighboring databases x and x′, either their argmax is the same (in which case privacy follows
immediately), or otherwise both their gaps are quite small, and in this case the output distribution
on both databases is uniformly random. The details follow:

Algorithm 32. Obvious Answer Mechanism

• Parameters: n, k ∈ N and a continuous distribution D on R.

• Public input: ` : X n × [k]→ R such that `(·, j) is sensitivity-1 for all j ∈ [k].

• Private input: x ∈ X n

• Define a permutation σx : [k] → [k] such that `(x, σx(j)) ≥ `(x, σx(j + 1)) for all

j ∈ [k − 1].
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• (Goal: Output σx(1) = argmaxj∈[k] `(x, j) ∈ [k], subject to differential privacy.)

• Let γ(x) = `(x, σx(1))− `(x, σx(2)) ∈ R.

• Let γ̂(x) = max
{

1
2 · γ(x)− 1, 0

}
.

• Compute a threshold tk(D) ∈ R such that P
Z←D

[Z > tk(D)] = 1/k. (Exact equality

is important.)

• Sample Z ← D.

• If γ̂(x) + Z > tk(D), output σx(1); else output σx(j) for a uniformly random j ∈
{2, 3, · · · , k}.

Clearly, if D is a symmetric distribution and γ̂(x) ≥ 2tk(D) or, equivalently, γ(x) ≥ 4tk(D) + 2,
then P [M(x) = σx(1)] ≥ 1− 1/k. This is our accuracy guarantee – if the gap is sufficiently large,
the correct answer is returned with high probability. The threshold tk(D) is determined by the tails
of the distribution D. In particular, by the guarantees of Theorem 30, we know that tk(D)� αn/2,
and thus the algorithm succeeds w.h.p. when the gap is at least αn.

Lemma 33. Suppose D is a differentially private noise-adding distribution for sensitivity-1 queries.
Then the obvious answer mechanism is differentially private with exactly the same privacy guaran-
tee. (This only assumes that the particular variant of differential privacy is closed under postpro-
cessing and that an algorithm that ignores its input is differentially private.)

Proof. Fix neighbouring inputs x, x′ ∈ X n.
Claim: Either σx(1) = σx′(1) or γ(x) + γ(x′) ≤ 2.
Before proving the claim, we shall complete the rest of the proof using a case analysis based on

the claim.
Case 1: σx(1) = σx′(1).

In this case we can treat the value of σx(1) = σx′(1) as a constant when comparing the output
distributions. Now the only private computation is deciding whether or not to output this constant.
Since γ̂(·) is a sensitivity-1 function and we assume that D is a differentially private noise-adding
distribution, the value of γ̂(·) +Z is a differentially private output. By postprocessing, the decision
γ̂(·) + Z > t(D) is differentially private and so is the output of the mechanism.

Case 2: γ(x) + γ(x′) ≤ 2.
In this case γ(x) ≤ 2 and γ̂(x) = max{1

2 ·γ(x)−1, 0} = 0. Thus P [γ̂(x) + Z > tk(D)] = 1/k. Hence
P [M(x) = σx(1)] = 1/k. For j > 1, we also have P [M(x) = σx(j)] = P [γ̂(x) + Z ≤ tk(D)] · 1

k−1 =
(1−1/k)/(k−1) = 1/k. Thus M(x) outputs a uniformly random element from [k]. Likewise, M(x′)
outputs a uniformly random answer. Since both distributions of M(x) and M(x′) are identical, we
trivially satisfy the differential privacy constraint.

Proof of Claim: Let j = σx(1) and j′ = σx′(1). Suppose j 6= j′. We must show that
γ(x)+γ(x′) ≤ 2. By the definition of j = σx(1) and γ(x), we have `(x, j)−γ(x) ≥ `(x, j′). Likewise,
`(x′, j′)− γ(x′) ≥ `(x′, j). Since ` is low-sensitivity in its first argument, `(x, j′) ≥ `(x′, j′)− 1 and
`(x′, j) ≥ `(x, j)− 1. We now add up these four inequalities to obtain

`(x, j)− γ(x)
+`(x′, j′)− γ(x′)

+`(x, j′)
+`(x′, j)

 ≥


`(x, j′)
+`(x′, j)

+`(x′, j′)− 1
+`(x, j)− 1

 ,

which simplifies to γ(x) + γ(x′) ≤ 2.
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6.3 Threshold Queries

We next use our gap-max algorithm as a subroutine for answering threshold queries over a totally
ordered domain. While thresholds are extremely simple functions, the problem of releasing answers
to threshold queries has received significant attention and has led to the development of a number of
new algorithmic techniques (e.g., [BNS13, BNSV15, DNRR15]). For a domain size k, the threshold
queries q1, · · · , qk : [k]n → R are defined by qj(x) = |{i ∈ [n] : xi ≤ j}|.

As with point queries, the problem of releasing k threshold queries has sample complexity n =
Θ(log(k)/ε) for pure (ε, 0)-DP and n = Θ(

√
log(k)/ρ) for ρ-zCDP. However, for approximate (ε, δ)-

DP, the sample complexity’s dependence on the number of thresholds k is much more intriguing.
While it lies between log∗ k and 2log∗ k [BNS13, BNSV15], the true dependence on k remains an
open problem.

In this section, we show that the sample complexity of releasing thresholds with (ρ, ω)-tCDP
is n = Õ((ω + 1/

√
ρ) · log log k), where the Õ notation hides factors sublogarithmic in log log k.

To do so, we leverage a reduction from [BNSV15] which proved a tight relationship between the
sample complexity of answering thresholds and that of a simpler problem called the interior point
problem. Given a dataset x ∈ [k]n, a solution to the interior point problem is a number j such
that mini∈[n] xi ≤ j ≤ maxi∈[n] xi. That is, j lies (non-strictly) between the least element and the
greatest element of the dataset x. The reduction of [BNSV15] showed that if the interior point
problem has sample complexity n, then threshold queries can be answered to accuracy α using
sample complexity n · Õ(1/α).

We actually describe our solution to the interior point problem under tCDP as the solution to
a more general problem. The generalized formulation lends itself more naturally to our recursive
construction.

Problem 34 (Generalized Interior Point). Let f : X n × [k]→ [0, 1] be a function such that

• The function f has sensitivity ∆ in its first argument. That is, for all x, x′ ∈ X n which differ
in a single entry, we have |f(x, j)− f(x′, j)| ≤ ∆.

• The function f is nondecreasing in its second argument. That is, f(x, j) ≤ f(x, j + 1) for all
1 ≤ j ≤ k − 1. For notational convenience, define f(x, 0) = 0 and f(x, k + 1) = 1 for all x.

We seek a differentially private algorithm M : X n → [k + 1] such that the following accuracy
guarantee holds with high probability: If j = M(x), then 0 < f(x, j) and f(x, j − 1) < 1.

To see that Problem 34 generalizes the interior point problem, observe that we recover the
formulation of the interior point problem by simply taking f(x, j) = qj(x) = |{i ∈ [n] : xi ≤ j}|,
which has sensitivity ∆ = 1.

Theorem 35. The generalized interior point problem with sensitivity ∆ can be solved with (ρ, ω)-
tCDP with sample complexity n = 2O(log∗ k) · (ω + 1/

√
ρ) ·∆ · log log k.

We begin with a high-level description of our recursive algorithm for the generalized interior
point problem. Each level of recursion reduces an instance of the problem with dataset size n,
domain size k, and sensitivity ∆ to a problem with dataset size n, domain size O(log k), and
sensitivity O(∆). After O(log∗ k) levels of recursion, we get a problem with constant domain size
and sensitivity 2O(log∗ k)∆ which can be solved directly, e.g., with the exponential mechanism.

We now describe one level of recursion of the algorithm. For simplicity, assume that k + 1 is a
power of two. Given an input dataset x ∈ X n, the algorithm first constructs a complete binary tree
with k+1 leaves and depth log2(k+1)+1. Each node of the tree corresponds to a dyadic subinterval
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of [k + 1]. That is, every leaf node corresponds to a single domain item, and every internal node
corresponds to the interval between its leftmost descendant and its rightmost descendant. The
value of a node corresponding to an interval [j1, j2] is the amount by which the function f(x, ·)
increases over that interval, i.e., f(x, j2)− f(x, j1).

This tree gives rise to a smaller instance of the generalized interior point problem by inducing a
function f̂ : X n× [log2(k+ 1) + 1], where f̂(x, ĵ) is the maximum value of any node at level ĵ of the
tree (numbering levels in increasing order from leaves to root). Given a solution to the generalized
interior point problem for f̂ , we now argue how to combine it with the gap-max algorithm to solve
the original problem for f .

Supposing our recursive call succeeds, we obtain an answer ĵ such that there exists a node at
level ĵ with value greater than 0, but every node at level ĵ − 1 has value less than 1. A small
technical modification lets us make the stronger guarantee that some node at level ĵ actually has
value greater than 1/5, while every node at level ĵ − 1 has value less than 2/5. Using the gap-
max algorithm, we can identify a node at level ĵ, corresponding to some interval [j1, j2], such that
f(x, j2)− f(x, j1) > 0.

On the other hand, since every node at level ĵ − 1 has value less than 2/5, we have f(x, j2) −
f(x, j1) < 4/5. Hence, either 1/10 < f(x, j1) < 1 or 0 < f(x, j2) < 9/10. A simple differentially
private test then allows us to identify at least one of the endpoints j1, j2 which serves as a generalized
interior point.

We now present our algorithm in more detail.

Algorithm 36. Generalized Interior Point Algorithm

• Parameters: n, k ∈ N, ∆ > 0.

• Public input: Function f : X n×[k]→ [0, 1] which has sensitivity ∆ in its first

argument and is nondecreasing in its second.

• Private input: Dataset x ∈ X n.

• Base case: If k ≤ 4, then use the exponential mechanism with loss function `(x, j) =
|f(x, j)− 1/2| to select an index j.

• Inductive case: Build a complete binary tree with k + 1 leaves.

– For each j ∈ [k + 1] there is a leaf node with the label (j, j) and the value

f(x, j)− f(x, j − 1).

– An internal node with children labelled (j1, j2) and (j2+1, j3) gets the label

(j1, j3) and its value is the sum of the values of its children -- i.e. f(x, j3)−
f(x, j1 − 1).

– (Every node’s value has sensitivity-2∆. The root’s label is (1, k+1) and

its value is always f(x, k + 1)− f(x, 0) = 1.)

– Number the levels of the tree from 1 (bottom/leaves) to k̂ = dlog2(k+1)e+1
(top/root).

• Define f̂ : X × [k̂] → [0, 1] as follows. First let g(x, ĵ) be the maximum value of

any node at level ĵ. Let f̂(x, ĵ) = truncate[0,1](5g(x, ĵ)− 1).

• (f̂ is sensitivity-10∆ in its first argument and increasing in its second argument.)
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(*) Recursively call this algorithm with n̂ = n, k̂ = dlog2(k + 1)e + 1, ∆̂ = 10∆, and

f̂ as above; obtain answer ĵ ∈ [k̂+1]. (Implement some base case for k = O(1).)

• (If the recursive call was successful, there exists a node on level ĵ with value

> 1
5 and all nodes on lower levels have value < 2

5. We can rule out ĵ > k̂, as

the root has value 1.)

(**) Using gap-max, privately find a node at level ĵ with value > 0 -- let (j−, j+) be

the label of this node and let v = f(x, j+)− f(x, j− − 1) > 0 be its value.

– (Recall that all node values are sensitivity-2∆ and are non-negative. The

values sum to at most 1 and the maximum value is at least â = 1
5 if the recursive

call was successful. Thus the gap between the largest and 10th-largest value

is as least 1
10.)

– (If the gap-max algorithm cannot directly handle the relaxed assumption of

a gap between the largest and 10th-largest values,5 then do the following.

Select a random subset of the values, including each value with probability
1
9. With probability at least 1

24, this set will include the largest value

but none of the 2nd-through-9th values. Run the gap-max algorithm on this

set and repeat until success.)

• (We will output either j+ or j−. It only remains to choose which.)

• (Since f(x, j+)−f(x, j−−1) > 0, we already know that f(x, j+) > 0 and f(x, j−−1) <
1. To output j+ we only need to verify that f(x, j+ − 1) < 1. To output j− we

need f(x, j−) > 0.)

• If j+ = j−, output j+. (Easy case.)

• (If j+ 6= j−, then (j−, j+) is not a leaf. We are guaranteed that all nodes at

lower levels have value < 2
5. Since the value v of (j−, j+) is the sum of the values

of its two children, we have v = f(x, j+)− f(x, j− − 1) < 4
5.)

• Define t+ = 1− f(x, j+ − 1) and t− = f(x, j−).

• (We have t+ ≥ 0, t− ≥ 0, and t+ + t− = 1 − (f(x, j+ − 1) − f(x, j−)) ≥ 1 − (f(x, j+) −
f(x, j− − 1)) > 1− 4

5 = 1
5.)

(***) Privately find Y with |Y − (t+ − t−)| ≤ 1
5. (Sensitivity of t+ − t− is 2∆.)

• If Y ≥ 0, output j+; else output j−. (It is correct to output j+ whenever t+ >
0. If the algorithm incorrectly outputs j+, then Y ≥ 0 and t+ = 0, whence t+−
t− < −1

5 and |Y − (t+ − t−)| > 1
5---a contradiction. Likewise, it is correct to

output j− whenever t− > 0 and the accuracy of Y sufficient for this too.)

The inline comments explain why this algorithm outputs a correct answer as long as the sub-
routine calls (*), (**), and (***) are accurate. Since the data is only touched via these subroutine
calls, the output is also differentially private as long as those subroutines are private. It remains
to precisely analyse the algorithm by studying the subroutine calls.

5The generalized histogram algorithm can easily be modified to directly handle this.
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Firstly, every recursive call (*) logarithmically reduces k and increases ∆ by a factor of 10.
Thus the recursion depth is log∗ k. (In practice, a simpler algorithm can be used after the first step
of recursion.) The decision step (***) can be performed with Laplace noise or similar and will be
dominated in terms of privacy cost by the gap-max step (**).

7 Lower Bounds

CDP, like pure DP and unlike approximate DP, is subject to information-theoretic “packing” lower
bounds [HT10, De12, BS16]. (Although for CDP these are quadratically weaker than for pure
DP.) We now prove packing lower bounds for tCDP. These lower bounds are exponentially weaker
than the corresponding ones for CDP and pure DP. Having weaker lower bounds is a good thing –
provided we don’t open the door for privacy violations.

The basis for our lower bounds is the following mutual information bound.

Theorem 37. Let M : X n → Y be a randomized algorithm satisfying (ρ, ω)-tCDP. Let X be a
random variable on X n. Then

I(X;M(X)) ≤ e
n
ω−1ω2ρ,

where I(·; ·) denotes the mutual information (in nats).

Note that if ω = n+1, then, up to a constant factor, this recovers the bound I(X;M(X)) ≤ n2ρ
which holds for ρ-zCDP [BS16, Thm. 1.10] and is the basis for CDP packing lower bounds.

Proof. By the group privacy property of tCDP (Proposition 9), we have that for any x, x′ ∈ X n
(i.e. we allow these to differ on n entries, corresponding to group size k = n),

Dα

(
M(x)

∥∥M(x′)
)
≤

((
1 +

1

ω − 1

)k
− 1

)
(ω − 1)ωρ ≤ e

k
ω−1 · ω2 · ρ

for

α = 1 +
1(

1 + 1
ω−1

)k
− 1

≥ 1 + e
−k
ω−1 > 1.

Since Rényi divergence is an increasing function of the order α, this implies

∀x, x′ ∈ X n D1

(
M(x)

∥∥M(x′)
)
≤ e

k
ω−1 · ω2 · ρ.

Now, by the definition of mutual information and the convexity of KL divergence,

I(X;M(X)) = E
x←X

[D1 (M(x)‖M(X))] ≤ E
x,x′←X

[
D1

(
M(x)

∥∥M(x′)
)]
≤ e

n
ω−1ω2ρ.

As an example, we prove a lower bound for point queries (cf. Corollary 20)

Corollary 38. Let M : X n → RX be (ρ, ω)-tCDP. Suppose

∀x ∈ X n P
M

[
max
u∈X
|M(x)u − qu(x)| ≥ n

2

]
≤ 1

2
,

where qu(x) = |{i ∈ [n] : xi = u}|. Then

n ≥ (ω − 1) log

(
log(|X |/4)

2ω2ρ

)
.
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In contrast, our corresponding upper bound (Corollary 20) shows that such a M exists provided
n ≥ 16ω arsinh(

√
log(2|X |)/2ω2ρ). (Note arsinh(x) ≈ log(x).) That is, our lower bound is tight to

within constant factors.

Proof. Let U ∈ X be uniformly random and let X ∈ X n be n copies of U . By Theorem 37,
I(X;M(X)) ≤ e

n
ω−1ω2ρ. Let V = argmaxv∈X M(X)v. Since qU (X) = n and q

Û
(X) = 0 for any

Û 6= U , by our accuracy assumption, P [U = V ] ≥ 1/2. Thus, by Fano’s inequality,

e
n
ω−1ω2ρ ≥ I(X;M(X)) ≥ I(U ;V ) = H(U)−H(U |V ) ≥ 1

2
log

(
|X |
4

)
.

Solving for n yields the result.
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